RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УМН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


УМН, 2018, том 73, выпуск 4(442), страницы 3–52 (Mi umn9843)  

Исчисление для схем рефлексии и спектры консервативности

Л. Д. Беклемишев

Математический институт им. В. А. Стеклова Российской академии наук

Аннотация: Строго позитивные логики в последнее время привлекают внимание специалистов благодаря их сочетанию эффективности и приемлемой выразительности. Язык исчисления рефлексий $\mathrm{RC}$ состоит из импликаций между формулами, составленными из пропозициональных переменных и константы “истина” лишь с помощью связки конъюнкции и модальностей, интерпретируемых в арифметике Пеано как ограниченные равномерные схемы рефлексии. Мы расширяем язык $\mathrm{RC}$ дополнительным семейством модальностей, соответствующих операторам, которые сопоставляют данной арифметической теории $T$ её фрагмент, аксиоматизированный всеми теоремами $T$ арифметической сложности $\Pi^0_n$ для каждого $n>0$. Мы показываем, что эти операторы, в некотором точном смысле, не представимы в полном языке модальной логики. Мы формулируем модальную систему $\mathrm{RC}^\nabla$, расширяющую $\mathrm{RC}$, которая корректна и, по нашей гипотезе, полна относительно указанной интерпретации. Показано, что в этой системе выразимы итерации схем рефлексии вплоть до любого ординала $<\varepsilon_0$. Далее, мы предлагаем нормальную форму для формул фрагмента $\mathrm{RC}^\nabla$ без переменных. На основе нормальных форм показывается алгоритмическая разрешимость данного фрагмента и его полнота относительно арифметической семантики. В заключительной части работы рассматриваются несколько естественных характеризаций алгебры Линденбаума–Тарского для замкнутого фрагмента $\mathrm{RC}^\nabla$ и для её двойственной шкалы Крипке. Элементы этой алгебры находятся в естественном соответствии с последовательностями теоретико-доказательственных $\Pi^0_{n+1}$-ординалов для ограниченных фрагментов арифметики Пеано, так называемых спектров консервативности, а также с точками известной модели Крипке, введённой К. Н. Игнатьевым.
Библиография: 46 названий.

Ключевые слова: строго позитивная модальная логика, RC, схема рефлексии, консервативность, ординал.

Финансовая поддержка Номер гранта
Российский научный фонд 16-11-10252
Исследование выполнено за счёт гранта Российского научного фонда (проект № 16-11-10252).


DOI: https://doi.org/10.4213/rm9843

Полный текст: PDF файл (862 kB)
Первая страница: PDF файл
Список литературы: PDF файл   HTML файл

Англоязычная версия:
DOI: https://doi.org/10.1070/RM9843

Реферативные базы данных:

Тип публикации: Статья
УДК: 510.2+510.6
Поступила в редакцию: 14.04.2018

Образец цитирования: Л. Д. Беклемишев, “Исчисление для схем рефлексии и спектры консервативности”, УМН, 73:4(442) (2018), 3–52

Цитирование в формате AMSBIB
\RBibitem{Bek18}
\by Л.~Д.~Беклемишев
\paper Исчисление для схем рефлексии и спектры консервативности
\jour УМН
\yr 2018
\vol 73
\issue 4(442)
\pages 3--52
\mathnet{http://mi.mathnet.ru/umn9843}
\crossref{https://doi.org/10.4213/rm9843}
\elib{http://elibrary.ru/item.asp?id=35276497}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/umn9843
  • https://doi.org/10.4213/rm9843
  • http://mi.mathnet.ru/rus/umn/v73/i4/p3

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Успехи математических наук Russian Mathematical Surveys
    Просмотров:
    Эта страница:55
    Литература:5
    Первая стр.:7

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018