RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2019, Volume 74, Issue 2(446), Pages 149–186 (Mi umn9870)  

This article is cited in 2 scientific papers (total in 2 papers)

Trace formula for the magnetic Laplacian

Yu. A. Kordyukovab, I. A. Taimanovcb

a Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
b Novosibirsk State University
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: The Guillemin–Uribe trace formula is a semiclassical version of the Selberg trace formula and the more general Duistermaat–Guillemin formula for elliptic operators on compact manifolds, which reflects the dynamics of magnetic geodesic flows in terms of eigenvalues of a natural differential operator (the magnetic Laplacian) associated with the magnetic field. This paper gives a survey of basic notions and results related to the Guillemin–Uribe trace formula and provides concrete examples of its computation for two-dimensional constant curvature surfaces with constant magnetic fields and for the Katok example.
Bibliography: 53 titles.

Keywords: trace formula, magnetic Laplacian, magnetic geodesics.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 14.Y26.31.0025
This work was supported by the Laboratory of Topology and Dynamics at Novosibirsk State University (contract no. 14.Y26.31.0025 with the Ministry of Education and Science of the Russian Federation).


DOI: https://doi.org/10.4213/rm9870

Full text: PDF file (756 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2019, 74:2, 325–361

Bibliographic databases:

UDC: 517.984+514.774.8
MSC: Primary 58J50; Secondary 37J35, 58J37, 81Q20
Received: 28.12.2018

Citation: Yu. A. Kordyukov, I. A. Taimanov, “Trace formula for the magnetic Laplacian”, Uspekhi Mat. Nauk, 74:2(446) (2019), 149–186; Russian Math. Surveys, 74:2 (2019), 325–361

Citation in format AMSBIB
\Bibitem{KorTai19}
\by Yu.~A.~Kordyukov, I.~A.~Taimanov
\paper Trace formula for the magnetic Laplacian
\jour Uspekhi Mat. Nauk
\yr 2019
\vol 74
\issue 2(446)
\pages 149--186
\mathnet{http://mi.mathnet.ru/umn9870}
\crossref{https://doi.org/10.4213/rm9870}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74..325K}
\elib{https://elibrary.ru/item.asp?id=37180593}
\transl
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 2
\pages 325--361
\crossref{https://doi.org/10.1070/RM9870}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000474710200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072728453}


Linking options:
  • http://mi.mathnet.ru/eng/umn9870
  • https://doi.org/10.4213/rm9870
  • http://mi.mathnet.ru/eng/umn/v74/i2/p149

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Ilyin, A. A. Laptev, “Magnetic Lieb–Thirring inequality for periodic functions”, Russian Math. Surveys, 75:4 (2020), 779–781  mathnet  crossref  crossref  isi
    2. Yu. A. Kordyukov, I. A. Taimanov, “Kvaziklassicheskoe priblizhenie dlya magnitnykh monopolei”, UMN, 75:6(456) (2020), 85–106  mathnet  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:343
    References:32
    First page:73

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021