|
This article is cited in 2 scientific papers (total in 2 papers)
Trace formula for the magnetic Laplacian
Yu. A. Kordyukovab, I. A. Taimanovcb a Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
b Novosibirsk State University
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract:
The Guillemin–Uribe trace formula is a semiclassical version of the Selberg trace formula and the more general Duistermaat–Guillemin formula for elliptic operators on compact manifolds, which reflects the dynamics of magnetic geodesic flows in terms of eigenvalues of a natural differential operator (the magnetic Laplacian) associated with the magnetic field. This paper gives a survey of basic notions and results related to the Guillemin–Uribe trace formula and provides concrete examples of its computation for two-dimensional constant curvature surfaces with constant magnetic fields and for the Katok example.
Bibliography: 53 titles.
Keywords:
trace formula, magnetic Laplacian, magnetic geodesics.
Funding Agency |
Grant Number |
Ministry of Education and Science of the Russian Federation  |
14.Y26.31.0025 |
This work was supported by the Laboratory of Topology and Dynamics at Novosibirsk State University (contract no. 14.Y26.31.0025 with the Ministry of Education and Science of the Russian Federation). |
DOI:
https://doi.org/10.4213/rm9870
Full text:
PDF file (756 kB)
First page: PDF file
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2019, 74:2, 325–361
Bibliographic databases:
UDC:
517.984+514.774.8
MSC: Primary 58J50; Secondary 37J35, 58J37, 81Q20 Received: 28.12.2018
Citation:
Yu. A. Kordyukov, I. A. Taimanov, “Trace formula for the magnetic Laplacian”, Uspekhi Mat. Nauk, 74:2(446) (2019), 149–186; Russian Math. Surveys, 74:2 (2019), 325–361
Citation in format AMSBIB
\Bibitem{KorTai19}
\by Yu.~A.~Kordyukov, I.~A.~Taimanov
\paper Trace formula for the magnetic Laplacian
\jour Uspekhi Mat. Nauk
\yr 2019
\vol 74
\issue 2(446)
\pages 149--186
\mathnet{http://mi.mathnet.ru/umn9870}
\crossref{https://doi.org/10.4213/rm9870}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74..325K}
\elib{https://elibrary.ru/item.asp?id=37180593}
\transl
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 2
\pages 325--361
\crossref{https://doi.org/10.1070/RM9870}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000474710200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072728453}
Linking options:
http://mi.mathnet.ru/eng/umn9870https://doi.org/10.4213/rm9870 http://mi.mathnet.ru/eng/umn/v74/i2/p149
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. A. Ilyin, A. A. Laptev, “Magnetic Lieb–Thirring inequality for periodic functions”, Russian Math. Surveys, 75:4 (2020), 779–781
-
Yu. A. Kordyukov, I. A. Taimanov, “Kvaziklassicheskoe priblizhenie dlya magnitnykh monopolei”, UMN, 75:6(456) (2020), 85–106
|
Number of views: |
This page: | 343 | References: | 32 | First page: | 73 |
|