Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2021, Volume 76, Issue 5(461), Pages 81–146 (Mi umn9998)  

One-dimensional dynamical systems

L. S. Efremovaab, E. N. Makhrovaa

a Lobachevsky State University of Nizhny Novgorod
b Moscow Institute of Physics and Technology

Abstract: The survey is devoted to the topological dynamics of maps defined on one-dimensional continua such as a closed interval, a circle, finite graphs (for instance, finite trees), or dendrites (locally connected continua without subsets homeomorphic to a circle). Connections between the periodic behaviour of trajectories, the existence of a horseshoe and homoclinic trajectories, and the positivity of topological entropy are investigated. Necessary and sufficient conditions for entropy chaos in continuous maps of an interval, a circle, or a finite graph, and sufficient conditions for entropy chaos in continuous maps of dendrites are presented. Reasons for similarities and differences between the properties of maps defined on the continua under consideration are analyzed. Extensions of Sharkovsky's theorem to certain discontinuous maps of a line or an interval and continuous maps on a plane are considered.
Bibliography: 207 titles.

Keywords: one-dimensional continuum, degree of a circle map, rotation set, finite graph, dendrite, periodic point, homoclinic point, horseshoe, topological entropy.

DOI: https://doi.org/10.4213/rm9998

Full text: PDF file (1233 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2021, 76:5, 821–881

Bibliographic databases:

UDC: 517.938.5
MSC: Primary 37B45, 37E05, 37E10, 37E25, 37E99; Secondary 37B40, 37E45
Received: 23.02.2021

Citation: L. S. Efremova, E. N. Makhrova, “One-dimensional dynamical systems”, Uspekhi Mat. Nauk, 76:5(461) (2021), 81–146; Russian Math. Surveys, 76:5 (2021), 821–881

Citation in format AMSBIB
\Bibitem{EfrMak21}
\by L.~S.~Efremova, E.~N.~Makhrova
\paper One-dimensional dynamical systems
\jour Uspekhi Mat. Nauk
\yr 2021
\vol 76
\issue 5(461)
\pages 81--146
\mathnet{http://mi.mathnet.ru/umn9998}
\crossref{https://doi.org/10.4213/rm9998}
\transl
\jour Russian Math. Surveys
\yr 2021
\vol 76
\issue 5
\pages 821--881
\crossref{https://doi.org/10.1070/RM9998}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000738251900001}


Linking options:
  • http://mi.mathnet.ru/eng/umn9998
  • https://doi.org/10.4213/rm9998
  • http://mi.mathnet.ru/eng/umn/v76/i5/p81

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:198
    References:32
    First page:29

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022