RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2019, Volume 16, Pages 369–405 (Mi semr1064)  

Real, complex and functional analysis

The matrix analysis of spectral projections for the perturbed self-adjoint operators

N. B. Uskova

Voronezh State Technical University, 14, Moskovsky ave., Voronezh, 394026, Russia

Abstract: We study bounded perturbations of an unbounded positive definite self-adjoint operator with discrete spectrum. The spectrum has semi-simple eigenvalues with finite geometric multiplicity and the perturbation belongs to operator space defined by rate of the off-diagonal decay of the operator matrix. We show that the spectral projections and the resolvent of the perturbed operator belong to the same space as the perturbation. These results are applied to the Hill operator and the operator with matrix potential. We also consider the inverse problem and the modified Galerkin method.

Keywords: the method of similar operators, the Hill operator, spectral projection.

Funding Agency Grant Number
Russian Foundation for Basic Research 19-01-00732
16-01-00197_


DOI: https://doi.org/10.33048/semi.2019.16.022

Full text: PDF file (306 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.9
MSC: 35L75
Received November 28, 2017, published March 19, 2019

Citation: N. B. Uskova, “The matrix analysis of spectral projections for the perturbed self-adjoint operators”, Sib. Èlektron. Mat. Izv., 16 (2019), 369–405

Citation in format AMSBIB
\Bibitem{Usk19}
\by N.~B.~Uskova
\paper The matrix analysis of spectral projections for the perturbed self-adjoint operators
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 369--405
\mathnet{http://mi.mathnet.ru/semr1064}
\crossref{https://doi.org/10.33048/semi.2019.16.022}


Linking options:
  • http://mi.mathnet.ru/eng/semr1064
  • http://mi.mathnet.ru/eng/semr/v16/p369

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:49
    Full text:14
    References:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019