RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2019, Volume 16, Pages 812–825 (Mi semr1096)  

Real, complex and functional analysis

Optimization method in 2D magnetic cloaking problems

Yu. E. Spivakab

a Institute of Applied Mathematics FEB RAS, 7, Radio str., Vladivostok, 690041, Russia
b Far Eastern Federal University, 8, Sukhanova str., Vladivostok, 690090, Russia

Abstract: We consider the optimization problem for the 2D model of magnetic scattering by a permeable obstacle having the form of a circular ring. Problems of this type arise while developing the design technologies of magnetic cloaking devices using the optimization method. The solvability of direct and control problems for the magnetic scattering model under study is proved. The sufficient conditions which provide local uniqueness and stability of optimal solutions are established.

Keywords: magnetic scattering problem, invisibility, cloaking, optimization problem, solvability, uniqueness, stability estimates.

Funding Agency Grant Number
Far Eastern Branch of the Russian Academy of Sciences 18-5-064


DOI: https://doi.org/10.33048/semi.2019.16.054

Full text: PDF file (969 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.95
MSC: 35Q93+65N21+78A46
Received February 11, 2018, published June 11, 2019

Citation: Yu. E. Spivak, “Optimization method in 2D magnetic cloaking problems”, Sib. Èlektron. Mat. Izv., 16 (2019), 812–825

Citation in format AMSBIB
\Bibitem{Spi19}
\by Yu.~E.~Spivak
\paper Optimization method in 2D magnetic cloaking problems
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 812--825
\mathnet{http://mi.mathnet.ru/semr1096}
\crossref{https://doi.org/10.33048/semi.2019.16.054}


Linking options:
  • http://mi.mathnet.ru/eng/semr1096
  • http://mi.mathnet.ru/eng/semr/v16/p812

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:14
    Full text:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019