RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2019, Volume 16, Pages 886–892 (Mi semr1100)  

Differentical equations, dynamical systems and optimal control

On transitive uniform partitions of $F^n$ into binary Hamming codes

F. I. Solov'eva

Sobolev Institute of Mathematics, pr. ac. Koptyuga 4, 630090, Novosibirsk, Russia

Abstract: We investigate transitive uniform partitions of the vector space $F^n$ of dimension $n$ over the Galois field $GF(2)$ into cosets of Hamming codes. A partition $P^n= \{H_0,H_1+e_1,\ldots,H_n+e_n\}$ of $F^n$ into cosets of Hamming codes $H_0,H_1,\ldots,H_n$ of length $n$ is said to be uniform if the intersection of any two codes $H_i$ and $H_j$, $i,j\in \{0,1,\ldots,n \}$ is constant, here $e_i$ is a binary vector in $F^n$ of weight $1$ with one in the $i$th coordinate position. For any $n=2^m-1$, $m>4$ we found a class of nonequivalent $2$-transitive uniform partitions of $F^n$ into cosets of Hamming codes.

Keywords: Hamming code, partition, uniform partition into Hamming codes, transitive partition, $2$-transitive partition, Reed–Muller code, dual code.

Funding Agency Grant Number
Russian Foundation for Basic Research 19-01-00682
The work is supported by RFBR (grant 19-01-00682).


DOI: https://doi.org/10.33048/semi.2019.16.058

Full text: PDF file (138 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 519.72
MSC: 94B60
Received September 3, 2018, published June 21, 2019
Language:

Citation: F. I. Solov'eva, “On transitive uniform partitions of $F^n$ into binary Hamming codes”, Sib. Èlektron. Mat. Izv., 16 (2019), 886–892

Citation in format AMSBIB
\Bibitem{Sol19}
\by F.~I.~Solov'eva
\paper On transitive uniform partitions of $F^n$ into binary Hamming codes
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 886--892
\mathnet{http://mi.mathnet.ru/semr1100}
\crossref{https://doi.org/10.33048/semi.2019.16.058}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000472619300001}


Linking options:
  • http://mi.mathnet.ru/eng/semr1100
  • http://mi.mathnet.ru/eng/semr/v16/p886

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:16
    Full text:4
    References:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019