RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2019, Volume 16, Pages 893–901 (Mi semr1101)  

Differentical equations, dynamical systems and optimal control

On some properties of first order algebraic differential equations

A. Y. Yanchenko, V. A. Podkopaeva

National Research University «MPEI», 14, Krasnokazarmennaya str., Moskow, 111250, Russia

Abstract: The paper deals with first-order algebraic differential equations. Installed effective necessary conditions under which such equations have one of the solutions of an entire function finite order. It is also proved that in this case every solution of such an equation is a solution of some linear homogeneous differential equation of a special type.

Keywords: algebraic differential equation, entire function, linear homogeneous differential equation.

DOI: https://doi.org/10.33048/semi.2019.16.059

Full text: PDF file (159 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.925
MSC: 34A09
Received February 15, 2019, published June 25, 2019

Citation: A. Y. Yanchenko, V. A. Podkopaeva, “On some properties of first order algebraic differential equations”, Sib. Èlektron. Mat. Izv., 16 (2019), 893–901

Citation in format AMSBIB
\Bibitem{YanPod19}
\by A.~Y.~Yanchenko, V.~A.~Podkopaeva
\paper On some properties of first order algebraic differential equations
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 893--901
\mathnet{http://mi.mathnet.ru/semr1101}
\crossref{https://doi.org/10.33048/semi.2019.16.059}


Linking options:
  • http://mi.mathnet.ru/eng/semr1101
  • http://mi.mathnet.ru/eng/semr/v16/p893

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:11
    Full text:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019