RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2019, Volume 16, Pages 1960–1980 (Mi semr1182)  

Geometry and topology

Transverse-Legendrian links

I. A. Dynnikovab

a V.A. Steklov Mathematical Institute of Russian Academy of Science, 8, Gubkina str., Moscow, 119991, Russia
b St. Petersburg State University, 29, Line 14th (Vasilyevsky Island), Saint Petersburg, 199178, Russia

Abstract: In recent joint works of the present author with M. Prasolov and V. Shastin a new technique for distinguishing Legendrian knots has been developed. In this paper the technique is extended further to provide a tool for distinguishing transverse knots. It is shown that the equivalence problem for transverse knots with trivial orientation-preserving symmetry group is algorithmically solvable. In a future paper the triviality condition for the orientation-preserving symmetry group will be dropped.

Keywords: Legendrian link, transverse link, rectangular diagram.

Funding Agency Grant Number
Russian Science Foundation 19-11-00151
This work is supported by the Russian Science Foundation under grant 19-11-00151.


DOI: https://doi.org/10.33048/semi.2019.16.141

Full text: PDF file (248 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 515.162.8
MSC: 57M25, 57M50, 57R17
Received November 26, 2019, published December 24, 2019

Citation: I. A. Dynnikov, “Transverse-Legendrian links”, Sib. Èlektron. Mat. Izv., 16 (2019), 1960–1980

Citation in format AMSBIB
\Bibitem{Dyn19}
\by I.~A.~Dynnikov
\paper Transverse-Legendrian links
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 1960--1980
\mathnet{http://mi.mathnet.ru/semr1182}
\crossref{https://doi.org/10.33048/semi.2019.16.141}


Linking options:
  • http://mi.mathnet.ru/eng/semr1182
  • http://mi.mathnet.ru/eng/semr/v16/p1960

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:63
    Full text:17
    References:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020