RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2008, Volume 5, Pages 465–482 (Mi semr121)  

Reviews

Condenser capacities and majorization principles in the geometric function theory of a complex variable

V. N. Dubinin

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences

Abstract: This survey paper is devoted to applications of potential theory to some extremal problems of the geometric function theory of a complex variable. In particular, we present variational principles of conformal mappings that are derived from the properties of generalized condensers and symmetrization in a unified way. The variations of the Robin functions under deformation of a domain or a portion of its boundary are considered. Applications of condensers and majorization principles include distortion theorems for holomorphic functions, covering theorem for $p$-valent functions in a circular annulus, Bernstein-type inequalities for rational functions with prescribed poles, polynomial inequalities and more.

Keywords: Condenser capacity, hyperbolic capacity, logarithmic capacity, Robin function, symmetrization, dissimmetrization, variational principles, majorization principles, conformal mappings, distortion theorems, covering theorems, $p$-valent functions, rational functions, polynomials.

Full text: PDF file (830 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 512.62, 517.54, 517.956
MSC: 30C10, 30C25, 30C75, 30C85, 31A15
Received September 1, 2008, published November 26, 2008

Citation: V. N. Dubinin, “Condenser capacities and majorization principles in the geometric function theory of a complex variable”, Sib. Èlektron. Mat. Izv., 5 (2008), 465–482

Citation in format AMSBIB
\Bibitem{Dub08}
\by V.~N.~Dubinin
\paper Condenser capacities and majorization principles in the geometric function theory of a~complex variable
\jour Sib. \`Elektron. Mat. Izv.
\yr 2008
\vol 5
\pages 465--482
\mathnet{http://mi.mathnet.ru/semr121}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2586651}


Linking options:
  • http://mi.mathnet.ru/eng/semr121
  • http://mi.mathnet.ru/eng/semr/v5/p465

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:177
    Full text:60
    References:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019