RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2007, Volume 4, Pages 482–503 (Mi semr169)  

This article is cited in 3 scientific papers (total in 3 papers)

Research papers

Orthogonalization, factorization, and identification as to the theory of recursive equations in linear algebra

A. O. Yegorshin

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We outline theoretical foundations for the recurrent algorithms of computational linear algebra based on counter orthogonalization processes over an ordered system of vectors; we also show the importance of these processes for analysis and applications. We present some important applications of counter orthogonalization processes related to some approximation problems and signal processing as well as recent applications related to the so called homogeneous structures and Toeplitz systems. In particular, these applications contain operators and inversion of matrices, $\mathbb{QDR}$- and $\mathbb{QDL}$-decompositions, $\mathbb{RDL}$- and $\mathbb{LDR}$-factorizations, solutions of integral equations and of systems of algebraic equations, signal estimation on based on approximation models in the form of differential and difference equations and variational identification (coefficients estimation) of the latter.

Full text: PDF file (263 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.925.54; 517.962.27/.8
MSC: 65F25; 15A03,09,23; 93E12
Received September 11, 2006, published December 6, 2007
Language: English

Citation: A. O. Yegorshin, “Orthogonalization, factorization, and identification as to the theory of recursive equations in linear algebra”, Sib. Èlektron. Mat. Izv., 4 (2007), 482–503

Citation in format AMSBIB
\Bibitem{Ego07}
\by A.~O.~Yegorshin
\paper Orthogonalization, factorization, and identification as to the theory of recursive equations in linear algebra
\jour Sib. \`Elektron. Mat. Izv.
\yr 2007
\vol 4
\pages 482--503
\mathnet{http://mi.mathnet.ru/semr169}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2465438}
\zmath{https://zbmath.org/?q=an:1132.65306}


Linking options:
  • http://mi.mathnet.ru/eng/semr169
  • http://mi.mathnet.ru/eng/semr/v4/p482

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Lomov, “Signal restoration in linear systems with trends. II”, Autom. Remote Control, 69:11 (2008), 1892–1902  mathnet  crossref  mathscinet  zmath  isi
    2. A. O. Egorshin, “Ob odnoi variatsionnoi zadache sglazhivaniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 4, 9–22  mathnet
    3. A. O. Egorshin, “On counter orthogonalization processes”, Num. Anal. Appl., 5:4 (2012), 307–319  mathnet  crossref  elib
  • Number of views:
    This page:94
    Full text:25
    References:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019