RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. электрон. матем. изв.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сиб. электрон. матем. изв., 2007, том 4, страницы 504–546 (Mi semr170)  

Статьи

Sheaves and $\mathfrak{Ta}$-bicompactifications of mappings

V. M. Ulyanov

Independent University of Russian Academy of Education, Novomoskovsk's Branch, Novomoskovsk, Russia

Аннотация: The paper is devoted to an investigation of relations between bicompactifications of mappings and sheaves of algebras. Bicompactifications of mappings are a generalization of compactifications of topological spaces, and sheaves of algebras take place of algebras of continuous bounded functions on topological spaces.
The first section contains a historical review of main constructions and notions used in the paper as well as a short introduction to the theory of bicompactifications of mappings. In particular, we state here basic definitions and recall some statements about bicompactifications of mappings that were obtained earlier.
In the second section some new topological properties of the fan product and the inverse limit are proved.
The third section contains important constructions which are used for an upbuilding of bicompactifications of mappings. Several new properties of these constructions are proved.
The fourth section is devoted to a definition and an investigation of algebras of functions on mappings. In this section a natural topology on these algebras is defined; the class of globally completely regular mappings is singled out for which such algebras play a role similar to that of algebras of continuous bounded functions on completely regular spaces; a functor from the category of mappings to the category of perfect globally completely regular mappings is constructed which preserves algebras of continuous “bounded” functions on mappings; a correspondence between “mappings” of mappings and homomorphisms of their algebras is investigated.
In the fifth section sheaves of algebras connected with mappings are defined and investigated.
The sixth section contains a proof of the main result of the paper: there exists a one-to-one correspondence preserving the order between the set of all $\mathfrak{Ta}$-bicompactifications of a given mapping and the set of all sheaves of a special kind.
In the seventh section we define maximal closed ideals of sheaves of algebras; relations between these ideals and points of $\mathfrak{Ta}$ of a given mapping are investigated.

Полный текст: PDF файл (1005 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 513.83
MSC: 54C25, 54C10, 54C35
Поступила 24 сентября 2006 г., опубликована 20 декабря 2007 г.
Язык публикации: английский

Образец цитирования: V. M. Ulyanov, “Sheaves and $\mathfrak{Ta}$-bicompactifications of mappings”, Сиб. электрон. матем. изв., 4 (2007), 504–546

Цитирование в формате AMSBIB
\RBibitem{Uly07}
\by V.~M.~Ulyanov
\paper Sheaves and $\mathfrak{Ta}$-bicompactifications of mappings
\jour Сиб. электрон. матем. изв.
\yr 2007
\vol 4
\pages 504--546
\mathnet{http://mi.mathnet.ru/semr170}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2465439}
\zmath{https://zbmath.org/?q=an:1132.54316}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/semr170
  • http://mi.mathnet.ru/rus/semr/v4/p504

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:124
    Полный текст:35
    Литература:36

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019