|
Сиб. электрон. матем. изв., 2010, том 7, страницы 275–283
(Mi semr244)
|
|
|
|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Статьи
Acyclic $3$-choosability of planar graphs with no cycles of length from $4$ to $11$
O. V. Borodinab, A. O. Ivanovac a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University
c Institute of Mathematics at Yakutsk State University
Аннотация:
Every planar graph is known to be acyclically $7$-choosable and is conjectured to be acyclically $5$-choosable (Borodin et al., 2002). This conjecture if proved would imply both Borodin's acyclic $5$-color theorem (1979) and Thomassen's $5$-choosability theorem (1994). However, as yet it has been verified only for several restricted classes of graphs. Some sufficient conditions are also obtained for a planar graph to be acyclically $4$- and $3$-choosable.
In particular, a planar graph of girth at least $7$ is acyclically $3$-colorable (Borodin, Kostochka and Woodall, 1999) and acyclically $3$-choosable (Borodin et al., 2010). A natural measure of sparseness, introduced by Erdős and Steinberg, is the absence of $k$-cycles, where $4\le k\le C$. Here, we prove that every planar graph with no cycles of length from $4$ to $11$ is acyclically $3$-choosable.
Ключевые слова:
acyclic coloring, planar graph, forbidden cycles.
Полный текст:
PDF файл (786 kB)
Список литературы:
PDF файл
HTML файл
Тип публикации:
Статья
УДК:
519.172
MSC: 05C15 Поступила 9 августа 2010 г., опубликована 17 сентября 2010 г.
Язык публикации: английский
Образец цитирования:
O. V. Borodin, A. O. Ivanova, “Acyclic $3$-choosability of planar graphs with no cycles of length from $4$ to $11$”, Сиб. электрон. матем. изв., 7 (2010), 275–283
Цитирование в формате AMSBIB
\RBibitem{BorIva10}
\by O.~V.~Borodin, A.~O.~Ivanova
\paper Acyclic $3$-choosability of planar graphs with no cycles of length from~$4$ to~$11$
\jour Сиб. электрон. матем. изв.
\yr 2010
\vol 7
\pages 275--283
\mathnet{http://mi.mathnet.ru/semr244}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/semr244 http://mi.mathnet.ru/rus/semr/v7/p275
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
О. В. Бородин, А. О. Иванова, “Ациклическая предписанная 5-раскрашиваемость плоских графов без 4-циклов”, Сиб. матем. журн., 52:3 (2011), 522–541
; O. V. Borodin, A. O. Ivanova, “Acyclic 5-choosability of planar graphs without 4-cycles”, Siberian Math. J., 52:3 (2011), 411–425 -
Chen M., Raspaud A., Roussel N., Zhu X., “Acyclic 4-choosability of planar graphs”, Discrete Math., 311:1 (2011), 92–101
-
Borodin O.V., Ivanova A.O., “Acyclic 5-choosability of planar graphs without adjacent short cycles”, J. Graph Theory, 68:2 (2011), 169–176
-
Borodin O.V., Ivanova A.O., “List 2-facial 5-colorability of plane graphs with girth at least 12”, Discrete Math., 312:2 (2012), 306–314
-
Borodin O.V., Ivanova A.O., “Acyclic 4-Choosability of Planar Graphs Without Adjacent Short Cycles”, Discrete Math., 312:22 (2012), 3335–3341
-
Borodin O.V., Ivanova A.O., “Acyclic 4-Choosability of Planar Graphs with No 4- and 5-Cycles”, J. Graph Theory, 72:4 (2013), 374–397
-
Borodin O.V., “Colorings of Plane Graphs: a Survey”, Discrete Math., 313:4 (2013), 517–539
-
Chen M., Raspaud A., “Planar Graphs Without 4-and 5-Cycles Are Acyclically 4-Choosable”, Discrete Appl. Math., 161:7-8 (2013), 921–931
|
Просмотров: |
Эта страница: | 282 | Полный текст: | 52 | Литература: | 43 |
|