RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2013, Volume 10, Pages 79–89 (Mi semr399)  

Mathematical logic, algebra and number theory

Independent bases for admissible rules of pretabular modal logic and its extensions

V. V. Rimatskii, V. R. Kiyatkin

Institute of Mathematics, Siberian Federal University

Abstract: We obtain independent bases for admissible inference rules of pretabular modal logics PT2, PT3 and all its extensions. Also we describe such bases for global admissible rules of logics PT2, PT3.

Keywords: (pretabular) modal logic, frame (model) Kripke, admissible inference rule, bass for admissible rules.

Full text: PDF file (560 kB)
References: PDF file   HTML file
UDC: 510.643
MSC: 03F25
Received September 22, 2012, published February 8, 2013

Citation: V. V. Rimatskii, V. R. Kiyatkin, “Independent bases for admissible rules of pretabular modal logic and its extensions”, Sib. Èlektron. Mat. Izv., 10 (2013), 79–89

Citation in format AMSBIB
\Bibitem{RimKiy13}
\by V.~V.~Rimatskii, V.~R.~Kiyatkin
\paper Independent bases for admissible rules of pretabular modal logic and its extensions
\jour Sib. \`Elektron. Mat. Izv.
\yr 2013
\vol 10
\pages 79--89
\mathnet{http://mi.mathnet.ru/semr399}


Linking options:
  • http://mi.mathnet.ru/eng/semr399
  • http://mi.mathnet.ru/eng/semr/v10/p79

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:143
    Full text:48
    References:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021