RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2014, Volume 11, Pages 87–118 (Mi semr474)  

This article is cited in 2 scientific papers (total in 2 papers)

Differentical equations, dynamical systems and optimal control

Construction of initial approximation and method of computing optimal control

V. M. Aleksandrov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: A method of reducing computational cost in the course of the control is considered. It is based on subdividing the whole computational process into the computations performed beforehand and those that are carried on while the control takes place. A method of calculation of initial approximation is proposed. Used here are the quasi-optimal control and subdividing of the range of initial conditions into the attainability domains. The ways for finding the support hyperplane and for computing approximate values of the switching times and the time of translating the system under the time-optimal control are given. It is developed an iterative procedure that allows the integrating to be carried out only over the displacement intervals of the switching times and that of the control completion time. It is proved that the sequence of quasi-optimal controls converges to the optimal control. The radius of the local convergence at the quadratic rate is obtained. The evaluation of computational working time of the method is given. The computational algorithm and the results of numerical calculations are presented.

Keywords: optimal control, quasi-optimal control, speed, switching time, attainability domain, approximation, support hyperplane, edge points, normalized adjoint system, iterative method, initial approximation, variation, computational cost.

Full text: PDF file (377 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 519.626.1
MSC: 49N05
Received September 3, 2013, published February 6, 2014

Citation: V. M. Aleksandrov, “Construction of initial approximation and method of computing optimal control”, Sib. Èlektron. Mat. Izv., 11 (2014), 87–118

Citation in format AMSBIB
\Bibitem{Ale14}
\by V.~M.~Aleksandrov
\paper Construction of initial approximation and method of computing optimal control
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 87--118
\mathnet{http://mi.mathnet.ru/semr474}


Linking options:
  • http://mi.mathnet.ru/eng/semr474
  • http://mi.mathnet.ru/eng/semr/v11/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Aleksandrov, “Optimal control of linear systems with interval constraints”, Comput. Math. Math. Phys., 55:5 (2015), 749–765  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. V. M. Aleksandrov, “Quasi-optimal control of dynamic systems”, Autom. Remote Control, 77:7 (2016), 1163–1179  mathnet  crossref  isi  elib  elib
  • Number of views:
    This page:172
    Full text:59
    References:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019