RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2015, Volume 12, Pages 300–308 (Mi semr587)  

This article is cited in 3 scientific papers (total in 3 papers)

Differentical equations, dynamical systems and optimal control

Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack

N. P. Lazarev, N. V. Neustroeva, N. A. Nikolaeva

North-Eastern Federal University, Belinsky, 58, 677891, Yakutsk, Russia

Abstract: We consider an equilibrium problem of an elastic plate with a flat oblique crack (cut). Nonpenetration conditions on the crack faces are given in the form of inequalities. We investigate the dependence of the solution and energy functional with respect to variations of the crack's tilt angle. The existence of the solution to the optimal control problem is proved. For that problem the cost functional is defined by derivatives of a energy functional along the crack perturbation parameter and the crack's tilt angle is chosen as the control function.

Keywords: oblique crack, optimal control, plate, variational inequality.

DOI: https://doi.org/10.17377/semi.2015.12.024

Full text: PDF file (168 kB)
References: PDF file   HTML file

UDC: 517.977
MSC: 49J21
Received April 27, 2015, published May 20, 2015

Citation: N. P. Lazarev, N. V. Neustroeva, N. A. Nikolaeva, “Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack”, Sib. Èlektron. Mat. Izv., 12 (2015), 300–308

Citation in format AMSBIB
\Bibitem{LazNeuNik15}
\by N.~P.~Lazarev, N.~V.~Neustroeva, N.~A.~Nikolaeva
\paper Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 300--308
\mathnet{http://mi.mathnet.ru/semr587}
\crossref{https://doi.org/10.17377/semi.2015.12.024}


Linking options:
  • http://mi.mathnet.ru/eng/semr587
  • http://mi.mathnet.ru/eng/semr/v12/p300

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. V. Pyatkina, “Optimal control of the shape of a layer shape in the equilibrium problem of elastic bodies with overlapping domains”, J. Appl. Industr. Math., 10:3 (2016), 435–443  mathnet  crossref  crossref  mathscinet  elib
    2. E. V. Pyatkina, “On control problem for two-layers elastic body with a crack”, J. Math. Sci., 230:1 (2018), 159–166  mathnet  crossref  crossref
    3. I. V. Fankina, “Optimalnoe upravlenie razmerom zhestkogo sloya konstruktsii”, Sib. zhurn. chist. i prikl. matem., 17:3 (2017), 86–97  mathnet  crossref
  • Number of views:
    This page:315
    Full text:68
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020