RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2015, Volume 12, Pages 328–343 (Mi semr590)  

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical logic, algebra and number theory

The Identities of vector spaces embedded in a linear algebra

I. M. Isaev, A. V. Kislitsin

Altai State Pedagogical University

Abstract: In this paper we study the identities of vector spaces embedded in linear algebras. We prove that the identities of the class of all vector spaces embedded in associative algebras do not follow from a finite set of the identities that are true in this class. Similar result is proved for the spaces embedded in Lie algebras. We constructed the example of a four-dimensional algebra over a field of characteristic zero which is a strongly not finitely based. The authors describe strongly nonfinitely based vector spaces that are finite-dimensional associative algebras with unity over a field of characteristic zero.

Keywords: Multiplicative vector pair, identity of pair, $L$-variety, linear algebra, associative algebras, Lie algebras, inherently nonfinitely based algebra, strongly nonfinitely based algebra.

DOI: https://doi.org/10.17377/semi.2015.12.027

Full text: PDF file (200 kB)
References: PDF file   HTML file

UDC: 512.552.4, 512.554.1
MSC: 16R10, 17A30
Received November 19, 2014, published May 27, 2015

Citation: I. M. Isaev, A. V. Kislitsin, “The Identities of vector spaces embedded in a linear algebra”, Sib. Èlektron. Mat. Izv., 12 (2015), 328–343

Citation in format AMSBIB
\Bibitem{IsaKis15}
\by I.~M.~Isaev, A.~V.~Kislitsin
\paper The Identities of vector spaces embedded in a linear algebra
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 328--343
\mathnet{http://mi.mathnet.ru/semr590}
\crossref{https://doi.org/10.17377/semi.2015.12.027}


Linking options:
  • http://mi.mathnet.ru/eng/semr590
  • http://mi.mathnet.ru/eng/semr/v12/p328

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Kislitsin, “The Specht property of $L$-varieties of vector spaces”, Algebra and Logic, 56:5 (2017), 362–369  mathnet  crossref  crossref  isi
    2. A. V. Kislitsin, “Simple finite-dimensional algebras without finite basis of identities”, Siberian Math. J., 58:3 (2017), 461–466  mathnet  crossref  crossref  isi  elib  elib
    3. A. V. Kislitsin, “On nonnilpotent almost commutative $L$-varieties of vector spaces”, Siberian Math. J., 59:3 (2018), 458–462  mathnet  crossref  crossref  isi  elib
    4. A. V. Kislitsin, “The Specht property of $L$-varieties of vector spaces over an arbitrary field”, Algebra and Logic, 57:5 (2018), 360–367  mathnet  crossref  crossref  isi
  • Number of views:
    This page:127
    Full text:31
    References:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019