RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2015, Volume 12, Pages 381–393 (Mi semr595)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

Novikov–Poisson anlgebras in low dimension

A. S. Zakharovab

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We classify Novikov–Poisson algebras in low dimmension. Also we obtain examples of the Novikov–Poisson algebra of non vector type.

Keywords: Novikov–Poisson algebra, nonassociative algebras.

DOI: https://doi.org/10.17377/semi.2015.12.032

Full text: PDF file (167 kB)
References: PDF file   HTML file

UDC: 512.554.7
MSC: 17D99
Received December 17, 2014, published June 10, 2015

Citation: A. S. Zakharov, “Novikov–Poisson anlgebras in low dimension”, Sib. Èlektron. Mat. Izv., 12 (2015), 381–393

Citation in format AMSBIB
\Bibitem{Zak15}
\by A.~S.~Zakharov
\paper Novikov--Poisson anlgebras in low dimension
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 381--393
\mathnet{http://mi.mathnet.ru/semr595}
\crossref{https://doi.org/10.17377/semi.2015.12.032}


Linking options:
  • http://mi.mathnet.ru/eng/semr595
  • http://mi.mathnet.ru/eng/semr/v12/p381

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. S. Zakharov, “Superalgebry Gelfanda–Dorfmana–Novikova–Puassona i ikh obertyvayuschie”, Sib. elektron. matem. izv., 16 (2019), 1843–1855  mathnet  crossref
  • Number of views:
    This page:132
    Full text:32
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020