RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2015, Volume 12, Pages 500–507 (Mi semr605)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

Complexity functions of some Leibniz–Poisson algebras

S. M. Ratseeva, O. I. Cherevatenkob

a Ulyanovsk State University, Lev Tolstoy, 42, 432017, Ulyanovsk, Russia
b Ulyanovsk State I.N.Ulyanov Pedagogical University, Ploshchad' 100-letiya so dnya rozhdeniya V.I. Lenina, 4, 432700, Ulyanovsk, Russia

Abstract: Leibniz–Poisson algebras are generalizations of Poisson algebras. Let $\{c_n(\mathbf{V})\}_{n\geq 0}$ and $\{\gamma_n(\mathbf{V})\}_{n\geq 2}$ are respectively sequences of codimensions and proper codimensions of varieties of Leibniz-Poisson algebras $\mathbf{V}$. We study the exponential generating functions $\mathcal{C}(\mathbf{V},z)=\sum_{n=0}^{\infty}c_n(\mathbf{V})z^n/n!$ and $\mathcal{C}^{p}(\mathbf{V},z)=\sum_{n=2}^{\infty}\gamma_n(\mathbf{V})z^n/n!$. The functions $\mathcal{C}(\mathbf{V},z)$ are used in the study of Lie algebras and associative algebras. In this paper we study numerical characteristics of varieties of Leibniz–Poisson algebras $\mathbf{V}_s$ defined by the identities
$$ \{ x_1, x_2 \} \cdot \{x_3, x_4 \} =0, \{x_0,\{x_1,x_2\},\ldots ,\{x_{2s-1},x_{2s}\}\}=0 $$
and of varieties of Leibniz–Poisson algebras $\mathbf{W}_s$ defined by the identities
$$ \{ x_1, x_2 \} \cdot \{x_3, x_4 \} =0, \{\{x_1,x_2\},\ldots ,\{x_{2s+1},x_{2s+2}\}\}=0, s\geq 1. $$
For each of the variety $\mathbf{V}_s$ and $\mathbf{W}_s$ an algebra-carrier is found and a basis of $n$-th proper polylinear space is built. We found exact formulas for the exponential generating functions for the codimension sequences and for the proper codimension sequences and exact formulas for codimension and proper codimension. Also a series of varieties of Leibniz–Poisson algebras, which codimension sequences asymptotically grow as polynomials of degree $k$, $k \geq 2 $, is given.

Keywords: Poisson algebra, Leibniz–Poisson algebra, variety of algebras, growth of variety.

DOI: https://doi.org/10.17377/semi.2015.12.042

Full text: PDF file (160 kB)
References: PDF file   HTML file

UDC: 512.572
MSC: 17B63
Received June 12, 2015, published September 10, 2015

Citation: S. M. Ratseev, O. I. Cherevatenko, “Complexity functions of some Leibniz–Poisson algebras”, Sib. Èlektron. Mat. Izv., 12 (2015), 500–507

Citation in format AMSBIB
\Bibitem{RatChe15}
\by S.~M.~Ratseev, O.~I.~Cherevatenko
\paper Complexity functions of some Leibniz--Poisson algebras
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 500--507
\mathnet{http://mi.mathnet.ru/semr605}
\crossref{https://doi.org/10.17377/semi.2015.12.042}


Linking options:
  • http://mi.mathnet.ru/eng/semr605
  • http://mi.mathnet.ru/eng/semr/v12/p500

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. M. Ratseev, O. I. Cherevatenko, “Chislovye kharakteristiki algebr Leibnitsa–Puassona”, Chebyshevskii sb., 18:1 (2017), 143–159  mathnet  crossref  elib
  • Number of views:
    This page:133
    Full text:32
    References:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021