Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2015, Volume 12, Pages 901–909 (Mi semr639)  

Mathematical logic, algebra and number theory

Almost Lie nilpotent varieties of associative rings

O. B. Finogenova

Ural Federal University, ul. Lenina, 51, 620083, Yekaterinburg, Russia

Abstract: A variety of associative rings is called Lie nilpotent if it satisfies the identity $[…[[x_1, x_2],…,x_n]=0$ for some positive integer $n$, where $[x, y]=xy-yx$. We study almost Lie nilpotent varieties, i.e., minimal elements in the set of all varieties that are not Lie nilpotent. We reduce the case of rings to the case of algebras over a finite prime field by proving that every almost Lie nilpotent variety of rings satisfies the identity $px=0$ for some prime integer $p$. We also show that for every finite base field $F$ it is sufficient to study all prime almost Lie nilpotent varieties algebras over any infinite extension of $F$ to find all such varieties of $F$-algebras. The nonprime almost Lie nilpotent varieties of algebras over positive characteristic fields, both infinite and finite, were described by the author in an earlier paper.

Keywords: Variety of associative algebras, identities of the associated Lie algebra, Lie nilpotency, Engel property, prime variety.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00524_а
Ministry of Education and Science of the Russian Federation НШ-5161.2014.1


DOI: https://doi.org/10.17377/semi.2015.12.076

Full text: PDF file (161 kB)
References: PDF file   HTML file

UDC: 519.23
MSC: 62F12
Received November 13, 2015, published December 3, 2015

Citation: O. B. Finogenova, “Almost Lie nilpotent varieties of associative rings”, Sib. Èlektron. Mat. Izv., 12 (2015), 901–909

Citation in format AMSBIB
\Bibitem{Fin15}
\by O.~B.~Finogenova
\paper Almost Lie nilpotent varieties of associative rings
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 901--909
\mathnet{http://mi.mathnet.ru/semr639}
\crossref{https://doi.org/10.17377/semi.2015.12.076}


Linking options:
  • http://mi.mathnet.ru/eng/semr639
  • http://mi.mathnet.ru/eng/semr/v12/p901

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:102
    Full text:24
    References:19

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022