RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2009, Volume 6, Pages 366–380 (Mi semr72)  

This article is cited in 6 scientific papers (total in 6 papers)

Research papers

Around a conjecture of P. Hall

D. O. Revinab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University

Abstract: In the paper, we discuss perspectives of future investigations of the Hall $\pi$-properties $E_\pi$, $C_\pi$ and $D_\pi$ in finite groups. A series of open problems is stated, both comparatirely new and well-known ones. It is proven that there are infinitely many infinite sets $\pi$ of primes with $E_\pi\Rightarrow D_\pi$. Precisely if $\pi$ consists of the primes $p>x$, for every real $x\ge7$ then $E_\pi\Rightarrow D_\pi$. This result continues the investigations initiated by well-known Hall's conjecture of 1956 that $E_\pi\Rightarrow D_\pi$ for every set $\pi$ of odd primes. This conjecture was disproved by F. Gross, who showed in 1984 that, for every finite set $\pi$ of odd primes with $|\pi|\ge2$, there exists a finite group $G$ such that $G\in E_\pi$ and $G\notin D_\pi$.

Keywords: prime number, $\pi$-subgroup, $\pi$-Hall subgroup, properties $E_\pi$, $C_\pi$ and $D_\pi$.

Full text: PDF file (813 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 512.542
MSC: 20D20
Received September 3, 2009, published November 7, 2009

Citation: D. O. Revin, “Around a conjecture of P. Hall”, Sib. Èlektron. Mat. Izv., 6 (2009), 366–380

Citation in format AMSBIB
\Bibitem{Rev09}
\by D.~O.~Revin
\paper Around a~conjecture of P.~Hall
\jour Sib. \`Elektron. Mat. Izv.
\yr 2009
\vol 6
\pages 366--380
\mathnet{http://mi.mathnet.ru/semr72}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2586695}


Linking options:
  • http://mi.mathnet.ru/eng/semr72
  • http://mi.mathnet.ru/eng/semr/v6/p366

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. P. Vdovin, D. O. Revin, “Theorems of Sylow type”, Russian Math. Surveys, 66:5 (2011), 829–870  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. D. O. Revin, “On a relation between the Sylow and Baer–Suzuki theorems”, Siberian Math. J., 52:5 (2011), 904–913  mathnet  crossref  mathscinet  isi
    3. E. P. Vdovin, D. O. Revin, “Pronormality of Hall subgroups in finite simple groups”, Siberian Math. J., 53:3 (2012), 419–430  mathnet  crossref  mathscinet  isi
    4. E. P. Vdovin, D. O. Revin, “On the pronormality of Hall subgroups”, Siberian Math. J., 54:1 (2013), 22–28  mathnet  crossref  mathscinet  isi
    5. W. Guo, D. O. Revin, “On the class of groups with pronormal Hall $\pi$-subgroups”, Siberian Math. J., 55:3 (2014), 415–427  mathnet  crossref  mathscinet  isi  elib  elib
    6. W. Guo, D. O. Revin, “Maximal and submaximal $\mathfrak X$-subgroups”, Algebra and Logic, 57:1 (2018), 9–28  mathnet  crossref  crossref  isi
  • Number of views:
    This page:285
    Full text:62
    References:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019