RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. электрон. матем. изв.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сиб. электрон. матем. изв., 2017, том 14, страницы 877–888 (Mi semr831)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Дискретная математика и математическая кибернетика

Совершенные двоичные коды бесконечной длины с полной системой троек

С. А. Малюгин

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Аннотация: An infinite-dimensional binary cube $\{0,1\}_0^{\mathbb N}$ consists of all sequences $u = (u_1,u_2,…)$, where $u_i= 0,1$, and all $u_i =0$ except some finite set of indices $i \in \mathbb N$. A subset $C \subset \{0,1\}_0^{\mathbb N}$ is called a perfect binary code with distance 3 if all balls of radius 1 (in the Hamming metric) with centers in $C$ are pairwise disjoint and their union covers this binary cube. We say that the perfect code $C$ has the complete system of triples if $C + C$ contains all vectors of $\{0,1\}_0^{\mathbb N}$ having weight 3. In this article we construct perfect binary codes having the complete system of triples (in particular, such codes are nonsystematic). These codes can be obtained from the Hamming code $H^\infty$ by switchings a some family of disjoint components ${\mathcal B} = \{R_1^{u_1},R_2^{u_2},…\}$. Unlike the codes of finite length, the family $\mathcal B$ must obey the rigid condition of sparsity. It is shown particularly that if the family of components $\mathcal B$ does not satisfy the condition of sparsity then it can generate a perfect code having non-complete system of triples.

Ключевые слова: perfect binary code, component, complete system of triples, nonsystematic code, condition of sparsity.

DOI: https://doi.org/10.17377/semi.2017.14.074

Полный текст: PDF файл (190 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 519.72
MSC: 94B60
Поступила 26 июля 2017 г., опубликована 14 сентября 2017 г.

Образец цитирования: С. А. Малюгин, “Совершенные двоичные коды бесконечной длины с полной системой троек”, Сиб. электрон. матем. изв., 14 (2017), 877–888

Цитирование в формате AMSBIB
\RBibitem{Mal17}
\by С.~А.~Малюгин
\paper Совершенные двоичные коды бесконечной длины с полной системой троек
\jour Сиб. электрон. матем. изв.
\yr 2017
\vol 14
\pages 877--888
\mathnet{http://mi.mathnet.ru/semr831}
\crossref{https://doi.org/10.17377/semi.2017.14.074}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/semr831
  • http://mi.mathnet.ru/rus/semr/v14/p877

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. С. А. Малюгин, “Систематические и несистематические совершенные коды бесконечной длины над конечными полями”, Сиб. электрон. матем. изв., 16 (2019), 1732–1751  mathnet  crossref
  • Просмотров:
    Эта страница:86
    Полный текст:16
    Литература:24
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020