RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2017, Volume 14, Pages 1505–1523 (Mi semr889)  

Mathematical logic, algebra and number theory

Alternative and Jordan algebras admitting ternary derivations with invertible values

V. N. Zhelyabin, A. I. Shestakov

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: In this paper we prove analogues of H. Komatsu and A. Nakajima theorems (see [1]) for alternative and Jordan algebras. In particular, we give a description of alternative and Jordan algebras which have ternary derivations with invertible values.

Keywords: Alternative algebras, Jordan algebras, Cayley–Dickson algebra, Albert algebra, derivation, generalized derivation, ternary derivation.

DOI: https://doi.org/10.17377/semi.2017.14.130

Full text: PDF file (195 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 512.554
MSC: 17C70
Received October 23, 2017, published December 29, 2017
Language:

Citation: V. N. Zhelyabin, A. I. Shestakov, “Alternative and Jordan algebras admitting ternary derivations with invertible values”, Sib. Èlektron. Mat. Izv., 14 (2017), 1505–1523

Citation in format AMSBIB
\Bibitem{ZheShe17}
\by V.~N.~Zhelyabin, A.~I.~Shestakov
\paper Alternative and Jordan algebras admitting ternary derivations with invertible values
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 1505--1523
\mathnet{http://mi.mathnet.ru/semr889}
\crossref{https://doi.org/10.17377/semi.2017.14.130}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000454861900061}


Linking options:
  • http://mi.mathnet.ru/eng/semr889
  • http://mi.mathnet.ru/eng/semr/v14/p1505

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:130
    Full text:34
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019