RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2018, Volume 15, Pages 35–47 (Mi semr896)  

Mathematical logic, algebra and number theory

Strong computability of slices over the logic $\mathrm{GL}$

L. L. Maksimovaab, V. F. Yunba

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova Str., 2, 630090, Novosibirsk, Russia

Abstract: In [2] the classification of extensions of the minimal logic $\mathrm{J}$ using slices was introduced and decidability of the classification was proved. We will consider extensions of the logic $ \mathrm{GL} = \mathrm{J} + (A \vee \neg A) $. The logic $\mathrm{GL}$ and its extensions have been studied in [8, 9]. In [6], it is established that the logic $\mathrm{GL}$ is strongly recognizable over $\mathrm{J}$, and the family of extensions of the logic $\mathrm{GL}$ is strongly decidable over $\mathrm{J}$. In this paper we prove strong decidability of the classification over $\mathrm{GL}$: for every finite set $ Rul $ of axiom schemes and rules of inference, it is possible to efficiently calculate the slice number of the calculus obtained by adding $ Rul $ as new axioms and rules to $\mathrm{GL}$.

Keywords: The minimal logic, slices, Kripke frame, decidability, recognizable logic.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation НШ-6848.2016.1


DOI: https://doi.org/10.17377/semi.2018.15.005

Full text: PDF file (178 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 510.6
MSC: 03B45
Received December 29, 2016, published January 18, 2018

Citation: L. L. Maksimova, V. F. Yun, “Strong computability of slices over the logic $\mathrm{GL}$”, Sib. Èlektron. Mat. Izv., 15 (2018), 35–47

Citation in format AMSBIB
\Bibitem{MakYun18}
\by L.~L.~Maksimova, V.~F.~Yun
\paper Strong computability of slices over the logic $\mathrm{GL}$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 35--47
\mathnet{http://mi.mathnet.ru/semr896}
\crossref{https://doi.org/10.17377/semi.2018.15.005}


Linking options:
  • http://mi.mathnet.ru/eng/semr896
  • http://mi.mathnet.ru/eng/semr/v15/p35

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:81
    Full text:23
    References:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019