RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2018, Volume 15, Pages 74–85 (Mi semr900)  

Mathematical logic, algebra and number theory

On groups saturated with dihedral groups and linear groups of degree $2$

A. A. Shlepkin

Siberian Federal University, pr. Svobodny, 79, 660041, Krasnoyarsk, Russia

Abstract: The paper establishes the structure of periodic groups and Shunkov groups saturated with groups consisting of the groups $\mathfrak{M}$ consisting of the groups $ L_2 (q) $, where $ q\equiv 3,5\pmod{8} $ and dihedral groups with Sylow $2$-subgroup of order $2$. It is proved that a periodic group saturated with groups from $ \mathfrak{M}$ is either isomorphic to a prime Group $ L_2 (Q) $ for some locally-finite field $ Q $, or is isomorphic to a locally dihedral group with Sylow $2$-subgroup of order $2$. Also, the existence of the periodic part of the Shunkov group saturated with groups from the set $ \mathfrak{M} $ is proved, and the structure of this periodic part is established.

Keywords: group saturated with a set of groups.

DOI: https://doi.org/10.17377/semi.2018.15.009

Full text: PDF file (173 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 512.54
MSC: 20K01
Received June 29, 2017, published January 30, 2018

Citation: A. A. Shlepkin, “On groups saturated with dihedral groups and linear groups of degree $2$”, Sib. Èlektron. Mat. Izv., 15 (2018), 74–85

Citation in format AMSBIB
\Bibitem{Shl18}
\by A.~A.~Shlepkin
\paper On groups saturated with dihedral groups and linear groups of degree~$2$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 74--85
\mathnet{http://mi.mathnet.ru/semr900}
\crossref{https://doi.org/10.17377/semi.2018.15.009}


Linking options:
  • http://mi.mathnet.ru/eng/semr900
  • http://mi.mathnet.ru/eng/semr/v15/p74

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:85
    Full text:27
    References:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019