RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2018, Volume 15, Pages 321–331 (Mi semr920)  

Mathematical logic, algebra and number theory

On $\mathcal{T}$-$\delta$-noncosingular modules

Y. Talebia, M. Hosseinpoura, T. C. Quynhb

a Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
b Department of Mathematics, Danang University, DaNang City, Vietnam

Abstract: In this paper, we introduce and study the notion of $\mathcal{T}$-$\delta$-noncosingular modules. The aim of this paper is to present some applications. Let $R$ be a commutative ring. If $R_{R}$ is $\mathcal{T}$-$\delta$-noncosingular, we show right $R_{R}$ is nonsingular. Also we prove that any singular regular module is an $\mathcal{T}$-$\delta$-noncosingular module.

Keywords: $\mathcal{T}$-$\delta$-noncosingular module, $\delta$-lifting module.

DOI: https://doi.org/10.17377/semi.2018.15.029

Full text: PDF file (166 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 512.552
MSC: 16D10, 16D70, 16D80
Received March 12, 2017, published March 21, 2018
Language: English

Citation: Y. Talebi, M. Hosseinpour, T. C. Quynh, “On $\mathcal{T}$-$\delta$-noncosingular modules”, Sib. Èlektron. Mat. Izv., 15 (2018), 321–331

Citation in format AMSBIB
\Bibitem{TalHosQuy18}
\by Y.~Talebi, M.~Hosseinpour, T.~C.~Quynh
\paper On $\mathcal{T}$-$\delta$-noncosingular modules
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 321--331
\mathnet{http://mi.mathnet.ru/semr920}
\crossref{https://doi.org/10.17377/semi.2018.15.029}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000438412200029}


Linking options:
  • http://mi.mathnet.ru/eng/semr920
  • http://mi.mathnet.ru/eng/semr/v15/p321

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:73
    Full text:27
    References:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019