RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2018, Volume 15, Pages 338–354 (Mi semr922)  

Differentical equations, dynamical systems and optimal control

Asymptotic of solutions of two-dimesional Gauss–Bierbach–Rademacher equation with variable coefficients in external area

A. V. Neklyudov

Bauman Moscow State Technical University, ul. Baumanskaya 2-ya, 5/1, 105005, Moscow, Russia

Abstract: We consider an asymptotic behavior at infinity of solutions of a semi-linear second order elliptic equation containing exponential nonlinear term. We establish that any solution in a circle’s exterior tends to a negative infinity with the same rate as the fundamental solution of respective linear homogeneous elliptic equation.

Keywords: semi-linear elliptic equation, Gauss equation, Bieberbach–Rademacher equation, asymptotic behavior.

DOI: https://doi.org/10.17377/semi.2018.15.031

Full text: PDF file (195 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.956
MSC: 35J61
Received May 16, 2017, published March 22, 2018

Citation: A. V. Neklyudov, “Asymptotic of solutions of two-dimesional Gauss–Bierbach–Rademacher equation with variable coefficients in external area”, Sib. Èlektron. Mat. Izv., 15 (2018), 338–354

Citation in format AMSBIB
\Bibitem{Nek18}
\by A.~V.~Neklyudov
\paper Asymptotic of solutions of two-dimesional Gauss--Bierbach--Rademacher equation with variable coefficients in external area
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 338--354
\mathnet{http://mi.mathnet.ru/semr922}
\crossref{https://doi.org/10.17377/semi.2018.15.031}


Linking options:
  • http://mi.mathnet.ru/eng/semr922
  • http://mi.mathnet.ru/eng/semr/v15/p338

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:50
    Full text:15
    References:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019