RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2018, Volume 15, Pages 412–421 (Mi semr928)  

This article is cited in 1 scientific paper (total in 1 paper)

Real, complex and functional analysis

On the connection between the generalized Riemann boundary value problem and the truncated Wiener–Hopf equation

A. F. Voronin

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: In this paper we an equivalen find a connection between the generalized Riemann boundary value problem (also known under the name of the Markushevich boundary problem or the ${\mathbb R}$-linear problem) and convolution equation of the second kind on a finite interval.

Keywords: ${\mathbb R}$-linear problem, problem of Markushevich, Riemann boundary value problems, factorization of matrix functions, factorization indices, stability, unique, convolution equation.

DOI: https://doi.org/10.17377/semi.2018.15.037

Full text: PDF file (526 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.544
MSC: 47A68
Received March 4, 2018, published April 23, 2018

Citation: A. F. Voronin, “On the connection between the generalized Riemann boundary value problem and the truncated Wiener–Hopf equation”, Sib. Èlektron. Mat. Izv., 15 (2018), 412–421

Citation in format AMSBIB
\Bibitem{Vor18}
\by A.~F.~Voronin
\paper On the connection between the generalized Riemann boundary value problem and the truncated Wiener--Hopf equation
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 412--421
\mathnet{http://mi.mathnet.ru/semr928}
\crossref{https://doi.org/10.17377/semi.2018.15.037}


Linking options:
  • http://mi.mathnet.ru/eng/semr928
  • http://mi.mathnet.ru/eng/semr/v15/p412

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. A. F. Voronin, “Obobschennaya kraevaya zadacha Rimana i integralnye uravneniya v svertkakh pervogo i vtorogo roda na konechnom intervale”, Sib. elektron. matem. izv., 15 (2018), 1651–1662  mathnet  crossref
  • Number of views:
    This page:54
    Full text:20
    References:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019