RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2018, Volume 15, Pages 570–584 (Mi semr937)  

Mathematical logic, algebra and number theory

On finite groups isospectral to the simple groups $S_4(q)$

Yuri V. Lytkin

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: The spectrum of a finite group is the set of its element orders. A finite group $G$ is critical with respect to a subset $\omega$ of the natural numbers if $\omega$ coincides with the spectrum of $G$ and does not coincide with the spectra of proper sections of $G$. We study the structure of groups with spectra equal to the spectra of the simple symplectic groups $PSp(4,q)$, where $q > 3$ and $q \neq 5$. In particular, we describe the structure of the groups critical with respect to the spectra of $PSp(4,q)$.

Keywords: finite group, spectrum, critical group, nonabelian simple group.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-31-00147__
The reported study was funded by RFBR according to the research project No. 163100147.


DOI: https://doi.org/10.17377/semi.2018.15.046

Full text: PDF file (194 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 512.5
MSC: 20D99
Received March 13, 2018, published May 17, 2018
Language: English

Citation: Yuri V. Lytkin, “On finite groups isospectral to the simple groups $S_4(q)$”, Sib. Èlektron. Mat. Izv., 15 (2018), 570–584

Citation in format AMSBIB
\Bibitem{Lyt18}
\by Yuri~V.~Lytkin
\paper On finite groups isospectral to the simple groups~$S_4(q)$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 570--584
\mathnet{http://mi.mathnet.ru/semr937}
\crossref{https://doi.org/10.17377/semi.2018.15.046}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000438412200046}


Linking options:
  • http://mi.mathnet.ru/eng/semr937
  • http://mi.mathnet.ru/eng/semr/v15/p570

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:39
    Full text:9
    References:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019