RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2018, Volume 15, Pages 696–706 (Mi semr946)  

This article is cited in 1 scientific paper (total in 1 paper)

Differentical equations, dynamical systems and optimal control

Cauchy problem for high even order parabolic equation with time fractional derivative

L. L. Karasheva

Institute of Applied Mathematics and Automation of KBSC RAS, Shortanova str., 89-A, 360000, Nalchik, Russia

Abstract: In the paper, we construct a fundamental solution for a higher order parabolic equation with time-fractional derivative and study its properties. We solve the Cauchy problem for the equation under study and prove a uniqueness theorem in the class of fast-growing functions.

Keywords: fundamental solution, Riemann–Liouville fractional derivative, Cauchy problem, high order equation.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00462_а


DOI: https://doi.org/10.17377/semi.2018.15.055

Full text: PDF file (173 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.95
MSC: 35K25
Received December 1, 2017, published June 11, 2018

Citation: L. L. Karasheva, “Cauchy problem for high even order parabolic equation with time fractional derivative”, Sib. Èlektron. Mat. Izv., 15 (2018), 696–706

Citation in format AMSBIB
\Bibitem{Kar18}
\by L.~L.~Karasheva
\paper Cauchy problem for high even order parabolic equation with time fractional derivative
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 696--706
\mathnet{http://mi.mathnet.ru/semr946}
\crossref{https://doi.org/10.17377/semi.2018.15.055}


Linking options:
  • http://mi.mathnet.ru/eng/semr946
  • http://mi.mathnet.ru/eng/semr/v15/p696

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. L. Karasheva, “Zadacha v polupolose dlya parabolicheskogo uravneniya vysokogo poryadka s operatorom Rimana-Liuvillya po vremennoi peremennoi”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2018, no. 3(23), 57–66  mathnet  crossref
  • Number of views:
    This page:44
    Full text:21
    References:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019