RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2018, Volume 15, Pages 768–772 (Mi semr950)  

Real, complex and functional analysis

On coordinate vector-functions of quasiregular mappings

V. V. Aseev

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: Let $f:R^n \to R^n=R^k\times R^{n-k}$ ($1\leq k\leq n-1$) be a $K$-quasiregular mapping and $\pi: R^n\to R^k$ denotes the canonical projection. Then we obtain a lower estimate for the distortion of the values of generalized angles in $R^k$ under the multy-valued function $F=f^{-1}\circ \pi^{-1}: R^k \to R^n$. This estimate is Möbius invariant and depends only on $K$ and $n$.

Keywords: quasiregular map, conformal capacity of condenser, Teichmüller's ring, generalized angle, mapping of bounded angular distortion.

Funding Agency Grant Number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 1.1.2., project No. 0314-2016-0007
The work is supported by the program of fundamental scientific researches of the SB RAS No. 1.1.2., project No. 0314-2016-0007.


DOI: https://doi.org/10.17377/semi.2018.15.062

Full text: PDF file (133 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.54
MSC: 30C65
Received April 17, 2018, published July 16, 2018
Language: English

Citation: V. V. Aseev, “On coordinate vector-functions of quasiregular mappings”, Sib. Èlektron. Mat. Izv., 15 (2018), 768–772

Citation in format AMSBIB
\Bibitem{Ase18}
\by V.~V.~Aseev
\paper On coordinate vector-functions of quasiregular mappings
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 768--772
\mathnet{http://mi.mathnet.ru/semr950}
\crossref{https://doi.org/10.17377/semi.2018.15.062}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000454860200004}


Linking options:
  • http://mi.mathnet.ru/eng/semr950
  • http://mi.mathnet.ru/eng/semr/v15/p768

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:9
    Full text:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019