RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2018, Volume 15, Pages 890–893 (Mi semr963)  

Geometry and topology

On a problem in the bendings theory of negatively curved surfaces

I. Kh. Sabitov

Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russia

Abstract: We show that for negatively curved surfaces one can have the following phenomenon: there exist two non-congruent isometric surfaces with a common open set.

Keywords: isometry, surfaces with negative curvature, common open domains.

DOI: https://doi.org/10.17377/semi.2018.15.076

Full text: PDF file (484 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 514.772.35
MSC: 53C
Received May 3, 2018, published August 17, 2018

Citation: I. Kh. Sabitov, “On a problem in the bendings theory of negatively curved surfaces”, Sib. Èlektron. Mat. Izv., 15 (2018), 890–893

Citation in format AMSBIB
\Bibitem{Sab18}
\by I.~Kh.~Sabitov
\paper On a problem in the bendings theory of negatively curved surfaces
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 890--893
\mathnet{http://mi.mathnet.ru/semr963}
\crossref{https://doi.org/10.17377/semi.2018.15.076}


Linking options:
  • http://mi.mathnet.ru/eng/semr963
  • http://mi.mathnet.ru/eng/semr/v15/p890

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:23
    Full text:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019