RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2018, Volume 15, Pages 741–758 (Mi semr976)  

Geometry and topology

The analytical method for embedding multidimensional pseudo-Euclidean geometries

V. A. Kyrov

Gorno-Altaiisk State University, st. Lenkina, 1, 649000, r. Altai, Gorno-Altaiisk, Russia

Abstract: As is known, the geometry of the local maximum mobility is an $n$-dimensional pseudo-Euclidean geometry. In this paper, we find all the $(n+1)$-dimensional geometries of the local maximal mobility whose metric functions contain the metric function of pseudo-Euclidean geometry as an argument. Such geometries are: $(n+1)$-dimensional pseudo-Euclidean geometry, $(n+1)$-dimensional special extension of $n$-dimensional pseudo-Euclidean geometry, $(n+1)$-dimensional geometry of constant curvature on a pseudo sphere.

Keywords: pseudo-Euclidean geometry, functional equation, differential equation, metric function.

DOI: https://doi.org/10.17377/semi.2018.15.060

Full text: PDF file (197 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 514.74,517.977
MSC: 53D05,39B22
Received February 21, 2018, published July 5, 2018

Citation: V. A. Kyrov, “The analytical method for embedding multidimensional pseudo-Euclidean geometries”, Sib. Èlektron. Mat. Izv., 15 (2018), 741–758

Citation in format AMSBIB
\Bibitem{Kyr18}
\by V.~A.~Kyrov
\paper The analytical method for embedding multidimensional
pseudo-Euclidean geometries
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 741--758
\mathnet{http://mi.mathnet.ru/semr976}
\crossref{https://doi.org/10.17377/semi.2018.15.060}


Linking options:
  • http://mi.mathnet.ru/eng/semr976
  • http://mi.mathnet.ru/eng/semr/v15/p741

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:31
    Full text:8
    References:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019