RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. электрон. матем. изв.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сиб. электрон. матем. изв., 2018, том 15, страницы 1174–1181 (Mi semr986)  

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Дискретная математика и математическая кибернетика

All tight descriptions of $3$-paths in plane graphs with girth at least $9$

V. A. Aksenova, O. V. Borodinb, A. O. Ivanovac

a Novosibirsk National Research University, str. Pirogova, 1, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
c Ammosov North-Eastern Federal University, str. Kulakovskogo, 48, 677000, Yakutsk, Russia

Аннотация: Lebesgue (1940) proved that every plane graph with minimum degree $\delta$ at least $3$ and girth $g$ at least $5$ has a path on three vertices ($3$-path) of degree $3$ each. A description is tight if no its parameter can be strengthened, and no triplet dropped.
Borodin et al. (2013) gave a tight description of $3$-paths in plane graphs with $\delta\ge3$ and $g\ge3$, and another tight description was given by Borodin, Ivanova and Kostochka in 2017.
Borodin and Ivanova (2015) gave seven tight descriptions of $3$-paths when $\delta\ge3$ and $g\ge4$. Furthermore, they proved that this set of tight descriptions is complete, which was a result of a new type in the structural theory of plane graphs. Also, they characterized (2018) all one-term tight descriptions if $\delta\ge3$ and $g\ge3$. The problem of producing all tight descriptions for $g\ge3$ remains widely open even for $\delta\ge3$.
Recently, several tight descriptions of $3$-paths were obtained for plane graphs with $\delta=2$ and $g\ge4$ by Jendrol', Maceková, Montassier, and Soták, four of which descriptions are for $g\ge9$.
In this paper, we prove ten new tight descriptions of $3$-paths for $\delta=2$ and $g\ge9$ and show that no other tight descriptions exist.

Ключевые слова: plane graph, structure properties, tight description, $3$-path, minimum degree, girth.

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 18-01-00353_a
16-01-00499_a
Министерство образования и науки Российской Федерации 1.7217.2017/6.7
The first author was supported by the Russian Foundation for Basic Research (grant 18-01-00353). The second author was supported by the Russian Foundation for Basic Research (grant 16-01-00499). The third author’s work was performed as a part of government work “Leading researchers on an ongoing basis” (1.7217.2017/6.7).


DOI: https://doi.org/10.17377/semi.2018.15.095

Полный текст: PDF файл (147 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 519.172.2
MSC: 05C75
Поступила 5 сентября 2018 г., опубликована 16 октября 2018 г.
Язык публикации: английский

Образец цитирования: V. A. Aksenov, O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths in plane graphs with girth at least $9$”, Сиб. электрон. матем. изв., 15 (2018), 1174–1181

Цитирование в формате AMSBIB
\RBibitem{AksBorIva18}
\by V.~A.~Aksenov, O.~V.~Borodin, A.~O.~Ivanova
\paper All tight descriptions of $3$-paths in plane graphs with girth at least~$9$
\jour Сиб. электрон. матем. изв.
\yr 2018
\vol 15
\pages 1174--1181
\mathnet{http://mi.mathnet.ru/semr986}
\crossref{https://doi.org/10.17377/semi.2018.15.095}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000454860200037}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/semr986
  • http://mi.mathnet.ru/rus/semr/v15/p1174

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least $6$”, Сиб. электрон. матем. изв., 16 (2019), 1334–1344  mathnet  crossref
    2. O. V. Borodin, A. O. Ivanova, “All tight descriptions of $3$-paths in plane graphs with girth at least $8$”, Сиб. электрон. матем. изв., 17 (2020), 496–501  mathnet  crossref
  • Просмотров:
    Эта страница:114
    Полный текст:22
    Литература:16
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021