RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. Èlektron. Mat. Izv., 2018, Volume 15, Pages 1216–1226 (Mi semr989)  

Differentical equations, dynamical systems and optimal control

The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras

R. F. Nikonorova

Mavlyutov Institute of Mechanics UFRC RAS, pr. Oktyabrya, 71, 450054, Ufa, Russia

Abstract: We consider the gas dynamics equations with the state equation of the monatomic gas. The equations admits a group of transformations with a 14-dimensional Lie algebra. We consider three-dimensional subalgebras containing the projective operator from the optimal system of subalgebras. Invariant and partially invariant submodels of lowest-rank are constructed for each of subalgebras.

Keywords: gas dynamics equations, submodel, projective operator.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-29-10071_мк
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0246-2018-0005


DOI: https://doi.org/10.17377/semi.2018.15.098

Full text: PDF file (151 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.958, 533
MSC: 35Q99, 76N15
Received December 31, 2017, published October 19, 2018

Citation: R. F. Nikonorova, “The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras”, Sib. Èlektron. Mat. Izv., 15 (2018), 1216–1226

Citation in format AMSBIB
\Bibitem{Nik18}
\by R.~F.~Nikonorova
\paper The lowest-rank monatomic gas submodels constructed on the basis of three-dimensional symmetry subalgebras
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 1216--1226
\mathnet{http://mi.mathnet.ru/semr989}
\crossref{https://doi.org/10.17377/semi.2018.15.098}


Linking options:
  • http://mi.mathnet.ru/eng/semr989
  • http://mi.mathnet.ru/eng/semr/v15/p1216

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:18
    Full text:2
    References:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019