RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2016, Volume 12, 106, 30 pages (Mi sigma1188)  

This article is cited in 6 scientific papers (total in 6 papers)

Polarisation of Graded Bundles

Andrew James Brucea, Janusz Grabowskia, Mikołaj Rotkiewiczb

a Institute of Mathematics, Polish Academy of Sciences, Poland
b Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

Abstract: We construct the full linearisation functor which takes a graded bundle of degree $k$ (a particular kind of graded manifold) and produces a $k$-fold vector bundle. We fully characterise the image of the full linearisation functor and show that we obtain a subcategory of $k$-fold vector bundles consisting of symmetric $k$-fold vector bundles equipped with a family of morphisms indexed by the symmetric group ${\mathbb S}_k$. Interestingly, for the degree 2 case this additional structure gives rise to the notion of a symplectical double vector bundle, which is the skew-symmetric analogue of a metric double vector bundle. We also discuss the related case of fully linearising $N$-manifolds, and how one can use the full linearisation functor to “superise” a graded bundle.

Keywords: graded manifolds; $N$-manifolds; $k$-fold vector bundles; polarisation; supermanifolds.

Funding Agency Grant Number
National Science Centre (Narodowe Centrum Nauki) DEC-2012/06/A/ST1/00256
Research funded by the Polish National Science Centre grant under the contract number DEC-2012/06/A/ST1/00256.


DOI: https://doi.org/10.3842/SIGMA.2016.106

Full text: PDF file (593 kB)
Full text: http://www.emis.de/journals/SIGMA/2016/106/
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1512.02345
MSC: 55R10; 58A32; 58A50
Received: December 14, 2015; in final form October 25, 2016; Published online November 2, 2016
Language:

Citation: Andrew James Bruce, Janusz Grabowski, Mikołaj Rotkiewicz, “Polarisation of Graded Bundles”, SIGMA, 12 (2016), 106, 30 pp.

Citation in format AMSBIB
\Bibitem{BruGraRot16}
\by Andrew~James~Bruce, Janusz~Grabowski, Miko\l aj~Rotkiewicz
\paper Polarisation of Graded Bundles
\jour SIGMA
\yr 2016
\vol 12
\papernumber 106
\totalpages 30
\mathnet{http://mi.mathnet.ru/sigma1188}
\crossref{https://doi.org/10.3842/SIGMA.2016.106}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000388502400001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84996488626}


Linking options:
  • http://mi.mathnet.ru/eng/sigma1188
  • http://mi.mathnet.ru/eng/sigma/v12/p106

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Andrew James Bruce, Katarzyna Grabowska, Janusz Grabowski, “Remarks on Contact and Jacobi Geometry”, SIGMA, 13 (2017), 059, 22 pp.  mathnet  crossref
    2. A. J. Bruce, K. Grabowska, J. Grabowski, “Introduction to graded bundles”, Note Mat., 37:1, S (2017), 59–74  crossref  mathscinet  zmath  isi
    3. A. J. Bruce, K. Grabowska, J. Grabowski, “On the concept of a filtered bundle”, Int. J. Geom. Methods Mod. Phys., 15:1 (2018), 1850013  crossref  mathscinet  zmath  isi
    4. M. Rotkiewicz, M. Jóźwikowski, “Higher-Order Analogs of Lie Algebroids via Vector Bundle Comorphisms”, SIGMA, 14 (2018), 135, 46 pp.  mathnet  crossref
    5. Vishnyakova E., “Graded Manifolds of Type and N-Fold Vector Bundles”, Lett. Math. Phys., 109:2 (2019), 243–293  crossref  mathscinet  zmath  isi  scopus
    6. Bruce A.J., “Connections Adapted to Non-Negatively Graded Structures”, Int. J. Geom. Methods Mod. Phys., 16:2 (2019), 1950021  crossref  mathscinet  zmath  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:58
    Full text:17
    References:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019