RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2006, Volume 2, 093, 17 pages (Mi sigma121)  

This article is cited in 3 scientific papers (total in 3 papers)

On the One Class of Hyperbolic Systems

Vsevolod E. Adler, Alexey B. Shabat

L. D. Landau Institute for Theoretical Physics, 1A prosp. ak. Semenova, 142432 Chernogolovka, Russia

Abstract: The classification problem is solved for some type of nonlinear lattices. These lattices are closely related to the lattices of Ruijsenaars–Toda type and define the Bäcklund auto-transformations for the class of two-component hyperbolic systems.

Keywords: hyperbolic systems; Bäcklund transformations; Ruijsenaars–Toda lattice; discrete Toda lattice

DOI: https://doi.org/10.3842/SIGMA.2006.093

Full text: PDF file (296 kB)
Full text: http://emis.mi.ras.ru/.../Paper093
References: PDF file   HTML file

Bibliographic databases:

ArXiv: nlin.SI/0612060
MSC: 35L75; 35Q55; 37K10; 37K35
Received: October 27, 2006; Published online December 27, 2006
Language:

Citation: Vsevolod E. Adler, Alexey B. Shabat, “On the One Class of Hyperbolic Systems”, SIGMA, 2 (2006), 093, 17 pp.

Citation in format AMSBIB
\Bibitem{AdlSha06}
\by Vsevolod E.~Adler, Alexey B.~Shabat
\paper On the One Class of Hyperbolic Systems
\jour SIGMA
\yr 2006
\vol 2
\papernumber 093
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma121}
\crossref{https://doi.org/10.3842/SIGMA.2006.093}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2280321}
\zmath{https://zbmath.org/?q=an:1138.35360}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000207065100092}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234679}


Linking options:
  • http://mi.mathnet.ru/eng/sigma121
  • http://mi.mathnet.ru/eng/sigma/v2/p93

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Pritula G.M., Vekslerchik V.E., “Toda-Heisenberg CHAIN: INTERACTING sigma-FIELDS IN TWO DIMENSIONS”, J Nonlinear Math Phys, 18:3 (2011), 443–459  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    2. Vekslerchik V.E., “Functional Representation of the Negative Dnls Hierarchy”, J. Nonlinear Math. Phys., 20:4 (2013), 495–513  crossref  mathscinet  isi  elib  scopus
    3. V. E. Adler, “Integrable seven-point discrete equations and second-order evolution chains”, Theoret. and Math. Phys., 195:1 (2018), 513–528  mathnet  crossref  crossref  adsnasa  isi  elib
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:237
    Full text:47
    References:35

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019