RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2017, Volume 13, 057, 17 pp. (Mi sigma1257)  

This article is cited in 4 scientific papers (total in 4 papers)

On Reductions of the Hirota–Miwa Equation

Andrew N. W. Hone, Theodoros E. Kouloukas, Chloe Ward

School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, UK

Abstract: The Hirota–Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota–Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale–Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations.

Keywords: Hirota–Miwa equation; Liouville integrable maps; Somos sequences; cluster algebras.

Funding Agency Grant Number
Engineering and Physical Sciences Research Council EP/P50421X/1
EP/M004333/1
Some of these results first appeared in the Ph.D. Thesis [28], which was supported by EPSRC studentship EP/P50421X/1. ANWH is supported by EPSRC fellowship EP/M004333/1.


DOI: https://doi.org/10.3842/SIGMA.2017.057

Full text: PDF file (424 kB)
Full text: http://www.emis.de/.../057
References: PDF file   HTML file

Bibliographic databases:

MSC: 70H06; 37K10; 39A20; 39A14; 13F60
Received: May 2, 2017; in final form July 17, 2017; Published online July 23, 2017
Language:

Citation: Andrew N. W. Hone, Theodoros E. Kouloukas, Chloe Ward, “On Reductions of the Hirota–Miwa Equation”, SIGMA, 13 (2017), 057, 17 pp.

Citation in format AMSBIB
\Bibitem{HonKouWar17}
\by Andrew~N.~W.~Hone, Theodoros~E.~Kouloukas, Chloe~Ward
\paper On Reductions of the Hirota--Miwa Equation
\jour SIGMA
\yr 2017
\vol 13
\papernumber 057
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma1257}
\crossref{https://doi.org/10.3842/SIGMA.2017.057}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000406497800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85026416233}


Linking options:
  • http://mi.mathnet.ru/eng/sigma1257
  • http://mi.mathnet.ru/eng/sigma/v13/p57

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. W. Hone, T. E. Kouloukas, G. R. W. Quispel, “Some integrable maps and their Hirota bilinear forms”, J. Phys. A-Math. Theor., 51:4 (2018), 044004  crossref  mathscinet  zmath  isi
    2. Runliang Lin, Yukun Du, “Generalized Darboux transformation for the discrete Kadomtsev–Petviashvili equation with self-consistent sources”, Theoret. and Math. Phys., 196:3 (2018), 1320–1332  mathnet  crossref  crossref  adsnasa  isi  elib
    3. C. A. Evripidou, G. R. W. Quispel, J. A. G. Roberts, “Poisson structures for difference equations”, J. Phys. A-Math. Theor., 51:47 (2018), 475201  crossref  mathscinet  zmath  isi  scopus
    4. Pogrebkov A., “Hirota Difference Equation and Darboux System: Mutual Symmetry”, Symmetry-Basel, 11:3 (2019), 436  crossref  isi
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:213
    Full text:16
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021