RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2017, Volume 13, 073, 26 pages (Mi sigma1273)  

This article is cited in 2 scientific papers (total in 2 papers)

Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings

Ismagil Habibullin, Mariya Poptsova

Ufa Institute of Mathematics, 112 Chernyshevsky Str., Ufa 450008, Russia

Abstract: The main goal of the article is testing a new classification algorithm. To this end we apply it to a relevant problem of describing the integrable cases of a subclass of two-dimensional lattices. By imposing the cut-off conditions $u_{-1}=c_0$ and $u_{N+1}=c_1$ we reduce the lattice $u_{n,xy}=\alpha(u_{n+1},u_n,u_{n-1})u_{n,x}u_{n,y}$ to a finite system of hyperbolic type PDE. Assuming that for each natural $N$ the obtained system is integrable in the sense of Darboux we look for $\alpha$. To detect the Darboux integrability of the hyperbolic type system we use an algebraic criterion of Darboux integrability which claims that the characteristic Lie rings of such a system must be of finite dimension. We prove that up to the point transformations only one lattice in the studied class passes the test. The lattice coincides with the earlier found Ferapontov–Shabat–Yamilov equation. The one-dimensional reduction $x=y$ of this lattice passes also the symmetry integrability test.

Keywords: two-dimensional integrable lattice; cut-off boundary condition; open chain; Darboux integrable system; characteristic Lie ring.

DOI: https://doi.org/10.3842/SIGMA.2017.073

Full text: PDF file (493 kB)
Full text: http://www.emis.de/.../073
References: PDF file   HTML file

Bibliographic databases:

MSC: 37K10; 37K30; 37D99
Received: March 30, 2017; in final form August 24, 2017; Published online September 7, 2017
Language:

Citation: Ismagil Habibullin, Mariya Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2017), 073, 26 pp.

Citation in format AMSBIB
\Bibitem{HabKuz17}
\by Ismagil~Habibullin, Mariya~Poptsova
\paper Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings
\jour SIGMA
\yr 2017
\vol 13
\papernumber 073
\totalpages 26
\mathnet{http://mi.mathnet.ru/sigma1273}
\crossref{https://doi.org/10.3842/SIGMA.2017.073}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000410663200001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029173515}


Linking options:
  • http://mi.mathnet.ru/eng/sigma1273
  • http://mi.mathnet.ru/eng/sigma/v13/p73

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105  mathnet  crossref  isi
    2. M. N. Poptsova, “Simmetrii odnoi periodicheskoi tsepochki”, Kompleksnyi analiz. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 162, VINITI RAN, M., 2019, 80–84  mathnet
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:96
    Full text:17
    References:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019