RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2018, Volume 14, 039, 37 pages (Mi sigma1338)  

Movable vs Monodromy Nilpotent Cones of Calabi–Yau Manifolds

Shinobu Hosono, Hiromichi Takagi

Department of Mathematics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan

Abstract: We study mirror symmetry of complete intersection Calabi–Yau manifolds which have birational automorphisms of infinite order. We observe that movable cones in birational geometry are transformed, under mirror symmetry, to the monodromy nilpotent cones which are naturally glued together.

Keywords: Calabi–Yau manifolds; mirror symmetry; birational geometry; Hodge theory.

Funding Agency Grant Number
Japan Society for the Promotion of Science C 16K05105
JP17H06127
C 16K05090
This work is supported in part by Grant-in Aid Scientific Research JSPS (C 16K05105, JP17H06127 S.H. and C 16K05090 H.T.).


DOI: https://doi.org/10.3842/SIGMA.2018.039

Full text: PDF file (776 kB)
Full text: https:/.../039
References: PDF file   HTML file

Bibliographic databases:

MSC: 14E05; 14E07; 14J33; 14N33
Received: September 11, 2017; in final form April 23, 2018; Published online May 2, 2018
Language:

Citation: Shinobu Hosono, Hiromichi Takagi, “Movable vs Monodromy Nilpotent Cones of Calabi–Yau Manifolds”, SIGMA, 14 (2018), 039, 37 pp.

Citation in format AMSBIB
\Bibitem{HosTak18}
\by Shinobu~Hosono, Hiromichi~Takagi
\paper Movable vs Monodromy Nilpotent Cones of Calabi--Yau Manifolds
\jour SIGMA
\yr 2018
\vol 14
\papernumber 039
\totalpages 37
\mathnet{http://mi.mathnet.ru/sigma1338}
\crossref{https://doi.org/10.3842/SIGMA.2018.039}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000431680600001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046540088}


Linking options:
  • http://mi.mathnet.ru/eng/sigma1338
  • http://mi.mathnet.ru/eng/sigma/v14/p39

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:83
    Full text:22
    References:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020