RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2018, Volume 14, 054, 18 pages (Mi sigma1353)  

This article is cited in 4 scientific papers (total in 4 papers)

Modified Algebraic Bethe Ansatz: Twisted XXX Case

Samuel Belliardab, Nikita A. Slavnovc, Benoit Valleta

a Institut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191, Gif-sur-Yvette, France
b Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Energies, LPTHE, -75005, Paris, France
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: We prove the modified algebraic Bethe Ansatz characterization of the spectral problem for the closed XXX Heisenberg spin chain with an arbitrary twist and arbitrary positive (half)-integer spin at each site of the chain. We provide two basis to characterize the spectral problem and two families of inhomogeneous Baxter T-Q equations. The two families satisfy an inhomogeneous quantum Wronskian equation.

Keywords: integrable spin chain; algebraic Bethe ansatz; Baxter T-Q equation; quantum Wronskian equation.

Funding Agency Grant Number
Agence Nationale de la Recherche ANR-11-LABX-0056-LMH
Russian Foundation for Basic Research 18-01-00273_a
S.B. was supported by a public grant as part of the Investissement d'avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH. N.S. was supported by the Russian Foundation RFBR-18-01-00273a.


DOI: https://doi.org/10.3842/SIGMA.2018.054

Full text: PDF file (414 kB)
Full text: https:/.../054
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1804.00597
MSC: 82R53; 81R12
Received: April 9, 2018; in final form May 28, 2018; Published online June 7, 2018
Language:

Citation: Samuel Belliard, Nikita A. Slavnov, Benoit Vallet, “Modified Algebraic Bethe Ansatz: Twisted XXX Case”, SIGMA, 14 (2018), 054, 18 pp.

Citation in format AMSBIB
\Bibitem{BelSlaVal18}
\by Samuel~Belliard, Nikita~A.~Slavnov, Benoit~Vallet
\paper Modified Algebraic Bethe Ansatz: Twisted XXX Case
\jour SIGMA
\yr 2018
\vol 14
\papernumber 054
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1353}
\crossref{https://doi.org/10.3842/SIGMA.2018.054}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000434458000001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050368656}


Linking options:
  • http://mi.mathnet.ru/eng/sigma1353
  • http://mi.mathnet.ru/eng/sigma/v14/p54

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gromov N., Levkovich-Maslyuk F., “New Compact Construction of Eigenstates For Supersymmetric Spin Chains”, J. High Energy Phys., 2018, no. 9, 085  crossref  isi  scopus
    2. Belliard S., Slavnov N.A., Vallet B., “Scalar Product of Twisted Xxx Modified Bethe Vectors”, J. Stat. Mech.-Theory Exp., 2018, 093103  crossref  isi  scopus
    3. Ryan P., Volin D., “Separated Variables and Wave Functions For Rational Gl(N) Spin Chains in the Companion Twist Frame”, J. Math. Phys., 60:3 (2019), 032701  crossref  mathscinet  zmath  isi  scopus
    4. Maillet J.M., Niccoli G., “Complete Spectrum of Quantum Integrable Lattice Models Associated to Y (Gl(N)) By Separation of Variables”, SciPost Phys., 6:6 (2019), 071  crossref  isi
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:65
    Full text:11
    References:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019