RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2018, Volume 14, 134, 18 pages (Mi sigma1433)  

A Product on Double Cosets of $B_\infty$

Pablo Gonzalez Pagotto

Institut Fourier, Université Grenoble Alpes, Grenoble, France

Abstract: For some infinite-dimensional groups $G$ and suitable subgroups $K$ there exists a monoid structure on the set $K\backslash G/K$ of double cosets of $G$ with respect to $K$. In this paper we show that the group $B_\infty$, of the braids with finitely many crossings on infinitely many strands, admits such a structure.

Keywords: Braid group; double cosets; Burau representation.

Funding Agency Grant Number
Fundação de Amparo à Pesquisa do Estado de São Paulo 2015/03341-9
This research was supported by FAPESP process 2015/03341-9.


DOI: https://doi.org/10.3842/SIGMA.2018.134

Full text: PDF file (479 kB)
Full text: https://www.imath.kiev.ua/~sigma/2018/134/
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1804.09603
MSC: 20F36; 20M99; 20C99
Received: May 28, 2018; in final form December 14, 2018; Published online December 27, 2018
Language:

Citation: Pablo Gonzalez Pagotto, “A Product on Double Cosets of $B_\infty$”, SIGMA, 14 (2018), 134, 18 pp.

Citation in format AMSBIB
\Bibitem{Gon18}
\by Pablo~Gonzalez Pagotto
\paper A Product on Double Cosets of $B_\infty$
\jour SIGMA
\yr 2018
\vol 14
\papernumber 134
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1433}
\crossref{https://doi.org/10.3842/SIGMA.2018.134}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000454498600001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065593020}


Linking options:
  • http://mi.mathnet.ru/eng/sigma1433
  • http://mi.mathnet.ru/eng/sigma/v14/p134

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:28
    Full text:7
    References:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020