RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


SIGMA, 2019, том 15, 029, 34 страниц (Mi sigma1465)  

The Horn Problem for Real Symmetric and Quaternionic Self-Dual Matrices

Robert Coquereauxa, Jean-Bernard Zuberbc

a Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
b Sorbonne Université, UMR 7589, LPTHE, F-75005, Paris, France
c CNRS, UMR 7589, LPTHE, F-75005, Paris, France

Аннотация: Horn's problem, i.e., the study of the eigenvalues of the sum $C=A+B$ of two matrices, given the spectrum of $A$ and of $B$, is re-examined, comparing the case of real symmetric, complex Hermitian and self-dual quaternionic $3\times 3$ matrices. In particular, what can be said on the probability distribution function (PDF) of the eigenvalues of $C$ if $A$ and $B$ are independently and uniformly distributed on their orbit under the action of, respectively, the orthogonal, unitary and symplectic group? While the two latter cases (Hermitian and quaternionic) may be studied by use of explicit formulae for the relevant orbital integrals, the case of real symmetric matrices is much harder. It is also quite intriguing, since numerical experiments reveal the occurrence of singularities where the PDF of the eigenvalues diverges. Here we show that the computation of the PDF of the symmetric functions of the eigenvalues for traceless $3\times 3$ matrices may be carried out in terms of algebraic functions – roots of quartic polynomials – and their integrals. The computation is carried out in detail in a particular case, and reproduces the expected singular patterns. The divergences are of logarithmic or inverse power type. We also relate this PDF to the (rescaled) structure constants of zonal polynomials and introduce a zonal analogue of the Weyl $\mathrm{SU}(n)$ characters.

Ключевые слова: Horn problem; honeycombs; polytopes; zonal polynomials; Littlewood–Richardson coefficients.

DOI: https://doi.org/10.3842/SIGMA.2019.029

Полный текст: PDF файл (5835 kB)
Полный текст: https://www.imath.kiev.ua/~sigma/2019/029/
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

ArXiv: 1809.03394
Тип публикации: Статья
MSC: 17B08,17B10,22E46,43A75,52Bxx
Поступила: 20 декабря 2018 г.; в окончательном варианте 6 апреля 2019 г.; опубликована 16 апреля 2019 г.
Язык публикации: английский

Образец цитирования: Robert Coquereaux, Jean-Bernard Zuber, “The Horn Problem for Real Symmetric and Quaternionic Self-Dual Matrices”, SIGMA, 15 (2019), 029, 34 pp.

Цитирование в формате AMSBIB
\RBibitem{CoqZub19}
\by Robert~Coquereaux, Jean-Bernard~Zuber
\paper The Horn Problem for Real Symmetric and Quaternionic Self-Dual Matrices
\jour SIGMA
\yr 2019
\vol 15
\papernumber 029
\totalpages 34
\mathnet{http://mi.mathnet.ru/sigma1465}
\crossref{https://doi.org/10.3842/SIGMA.2019.029}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000469852600001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068681417}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/sigma1465
  • http://mi.mathnet.ru/rus/sigma/v15/p29

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Symmetry, Integrability and Geometry: Methods and Applications
    Просмотров:
    Эта страница:28
    Полный текст:10
    Литература:9
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019