Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2019, Volume 15, 066, 30 pp. (Mi sigma1502)  

This article is cited in 5 scientific papers (total in 5 papers)

Scalar Products in Twisted XXX Spin Chain. Determinant Representation

Samuel Belliarda, Nikita A. Slavnovb

a Institut Denis-Poisson, Université de Tours, Université d'Orléans, Parc de Grammont, 37200 Tours, France
b Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina Str., Moscow, 119991, Russia

Abstract: We consider XXX spin-$1/2$ Heisenberg chain with non-diagonal boundary conditions. We obtain a compact determinant representation for the scalar product of on-shell and off-shell Bethe vectors. In the particular case when both Bethe vectors are on shell, we obtain a determinant representation for the norm of on-shell Bethe vector and prove orthogonality of the on-shell vectors corresponding to the different eigenvalues of the transfer matrix.

Keywords: XXX chain, non-diagonal boundary conditions, scalar product, determinant.

Funding Agency Grant Number
Russian Science Foundation 19-11-00062
This work is supported by the Russian Science Foundation under grant 19-11-00062.


DOI: https://doi.org/10.3842/SIGMA.2019.066

Full text: PDF file (521 kB)
Full text: https://www.imath.kiev.ua/~sigma/2019/066/
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 1906.06897
MSC: 82B23, 81R50
Received: June 19, 2019; in final form August 27, 2019; Published online September 3, 2019
Language:

Citation: Samuel Belliard, Nikita A. Slavnov, “Scalar Products in Twisted XXX Spin Chain. Determinant Representation”, SIGMA, 15 (2019), 066, 30 pp.

Citation in format AMSBIB
\Bibitem{BelSla19}
\by Samuel~Belliard, Nikita~A.~Slavnov
\paper Scalar Products in Twisted XXX Spin Chain. Determinant Representation
\jour SIGMA
\yr 2019
\vol 15
\papernumber 066
\totalpages 30
\mathnet{http://mi.mathnet.ru/sigma1502}
\crossref{https://doi.org/10.3842/SIGMA.2019.066}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3998984}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000485987300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073358938}


Linking options:
  • http://mi.mathnet.ru/eng/sigma1502
  • http://mi.mathnet.ru/eng/sigma/v15/p66

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Belliard, N. A. Slavnov, “Why scalar products in the algebraic bethe ansatz have determinant representation”, J. High Energy Phys., 2019, no. 10, 103  crossref  mathscinet  zmath  isi
    2. P. Baseilhac, R. A. Pimenta, “Diagonalization of the heun-askey-wilson operator, leonard pairs and the algebraic bethe ansatz”, Nucl. Phys. B, 949 (2019), 114824  crossref  mathscinet  zmath  isi
    3. M. Vasilyev, A. Zabrodin, A. Zotov, “Quantum-classical correspondence for gl(1|1) supersymmetric Gaudin magnet with boundary”, J. Phys. A-Math. Theor., 53:49 (2020), 494002  crossref  mathscinet  isi  scopus
    4. M. Vasilyev, A. Zabrodin, A. Zotov, “Quantum-classical duality for Gaudin magnets with boundary”, Nucl. Phys. B, 952 (2020), 114931  crossref  mathscinet  isi
    5. S. Belliard, N. A. Slavnov, “Overlap between usual and modified Bethe vectors”, Theoret. and Math. Phys., 209:1 (2021), 1387–1402  mathnet  crossref  crossref  isi
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:98
    Full text:26
    References:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021