Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


SIGMA, 2020, том 16, 034, 14 стр. (Mi sigma1571)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Breathing Modes, Quartic Nonlinearities and Effective Resonant Systems

Oleg Evninabc

a International Solvay Institutes, Brussels, Belgium
b Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
c Theoretische Natuurkunde, Vrije Universiteit Brussel, Brussels, Belgium

Аннотация: A breathing mode in a Hamiltonian system is a function on the phase space whose evolution is exactly periodic for all solutions of the equations of motion. Such breathing modes are familiar from nonlinear dynamics in harmonic traps or anti-de Sitter spacetimes, with applications to the physics of cold atomic gases, general relativity and high-energy physics. We discuss the implications of breathing modes in weakly nonlinear regimes, assuming that both the Hamiltonian and the breathing mode are linear functions of a coupling parameter, taken to be small. For a linear system, breathing modes dictate resonant relations between the normal frequencies. These resonant relations imply that arbitrarily small nonlinearities may produce large effects over long times. The leading effects of the nonlinearities in this regime are captured by the corresponding effective resonant system. The breathing mode of the original system translates into an exactly conserved quantity of this effective resonant system under simple assumptions that we explicitly specify. If the nonlinearity in the Hamiltonian is quartic in the canonical variables, as is common in many physically motivated cases, further consequences result from the presence of the breathing modes, and some nontrivial explicit solutions of the effective resonant system can be constructed. This structure explains in a uniform fashion a series of results in the recent literature where this type of dynamics is realized in specific Hamiltonian systems, and predicts other situations of interest where it should emerge.

Ключевые слова: weak nonlinearity, multiscale dynamics, time-periodic energy transfer.

Финансовая поддержка Номер гранта
Fonds Wetenschappelijk Onderzoek G006918N
National Science Centre (Narodowe Centrum Nauki) 2017/26/A/ST2/00530
Chulalongkorn University CUAASC
This research is supported by CUniverse research promotion project at Chulalongkorn University (grant CUAASC) and by FWO-Vlaanderen through project G006918N. Part of this work was developed during a visit to the physics department of the Jagiellonian Breathing Modes, Quartic Nonlinearities and Effective Resonant Systems 13 University (Krakow, Poland). Support of the Polish National Science Centre through grant number 2017/26/A/ST2/00530 and personal hospitality of Piotr and Magda Bizón are gratefully acknowledged.


DOI: https://doi.org/10.3842/SIGMA.2020.034

Полный текст: PDF файл (346 kB)
Полный текст: https://www.imath.kiev.ua/~sigma/2020/034/
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

ArXiv: 1912.07952
Тип публикации: Статья
MSC: 35B20, 35Q55, 35Q75, 35L05, 81Q05
Поступила: 20 февраля 2020 г.; в окончательном варианте 14 апреля 2020 г.; опубликована 23 апреля 2020 г.
Язык публикации: английский

Образец цитирования: Oleg Evnin, “Breathing Modes, Quartic Nonlinearities and Effective Resonant Systems”, SIGMA, 16 (2020), 034, 14 pp.

Цитирование в формате AMSBIB
\RBibitem{Evn20}
\by Oleg~Evnin
\paper Breathing Modes, Quartic Nonlinearities and Effective Resonant Systems
\jour SIGMA
\yr 2020
\vol 16
\papernumber 034
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma1571}
\crossref{https://doi.org/10.3842/SIGMA.2020.034}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000528034000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084821692}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/sigma1571
  • http://mi.mathnet.ru/rus/sigma/v16/p34

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. De Clerck M., Evnin O., “Time-Periodic Quantum States of Weakly Interacting Bosons in a Harmonic Trap”, Phys. Lett. A, 384:36 (2020), 126930  crossref  mathscinet  zmath  isi
  • Symmetry, Integrability and Geometry: Methods and Applications
    Просмотров:
    Эта страница:48
    Полный текст:6
    Литература:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021