RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2007, Volume 3, 032, 13 pages (Mi sigma158)  

This article is cited in 3 scientific papers (total in 3 papers)

A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body

Gregorio Falqui

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via R. Cozzi, 53, 20125 Milano, Italy

Abstract: We consider an $SO(4)$ Euler rigid body with two “inertia momenta” coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.

Keywords: Euler top; separation of variables; bihamiltonian manifolds

DOI: https://doi.org/10.3842/SIGMA.2007.032

Full text: PDF file (247 kB)
Full text: http://emis.mi.ras.ru/.../032
References: PDF file   HTML file

Bibliographic databases:

ArXiv: math-ph/0611045
MSC: 37K10; 70H20; 14H70
Received: November 15, 2006; in final form February 2, 2007; Published online February 26, 2007
Language:

Citation: Gregorio Falqui, “A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body”, SIGMA, 3 (2007), 032, 13 pp.

Citation in format AMSBIB
\Bibitem{Fal07}
\by Gregorio Falqui
\paper A~Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body
\jour SIGMA
\yr 2007
\vol 3
\papernumber 032
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma158}
\crossref{https://doi.org/10.3842/SIGMA.2007.032}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2299833}
\zmath{https://zbmath.org/?q=an:1135.37026}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000207065200032}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236364}


Linking options:
  • http://mi.mathnet.ru/eng/sigma158
  • http://mi.mathnet.ru/eng/sigma/v3/p32

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Rastelli G., Santoprete M., “Canonoid and Poissonoid Transformations, Symmetries and Bihamiltonian Structures”, J. Geom. Mech., 7:4 (2015), 483–515  crossref  mathscinet  zmath  isi  elib  scopus
    2. Dragovic V., Gajic B., Jovanovic B., “Note on Free Symmetric Rigid Body Motion”, Regul. Chaotic Dyn., 20:3 (2015), 293–308  mathnet  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. T. V. Skrypnik, “Separation of variables in the anisotropic Shottky–Frahm model”, Theoret. and Math. Phys., 196:3 (2018), 1347–1365  mathnet  crossref  crossref  adsnasa  isi  elib
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:140
    Full text:29
    References:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020