|
SIGMA, 2020, Volume 16, 053, 21 pp.
(Mi sigma1590)
|
|
|
|
Addition of Divisors on Hyperelliptic Curves via Interpolation Polynomials
Julia Bernatskaa, Yaacov Kopeliovichb a National University of Kyiv-Mohyla Academy, 2 Skovorody Str., Kyiv, 04655, Ukraine
b University of Connecticut, 2100 Hillside Rd, Storrs Mansfield, 06269, USA
Abstract:
Two problems are addressed: reduction of an arbitrary degree non-special divisor to the equivalent divisor of the degree equal to genus of a curve, and addition of divisors of arbitrary degrees. The hyperelliptic case is considered as the simplest model. Explicit formulas defining reduced divisors for some particular cases are found. The reduced divisors are obtained in the form of solution of the Jacobi inversion problem which provides the way of computing Abelian functions on arbitrary non-special divisors.
An effective reduction algorithm is proposed, which has the advantage that it involves only arithmetic operations on polynomials. The proposed addition algorithm contains more details comparing with the known in cryptography, and is extended to divisors of arbitrary degrees comparing with the known in the theory of hyperelliptic functions.
Keywords:
reduced divisor, inverse divisor, non-special divisor, generalised Jacobi inversion problem.
DOI:
https://doi.org/10.3842/SIGMA.2020.053
Full text:
PDF file (378 kB)
Full text:
https://www.imath.kiev.ua/~sigma/2020/053/
References:
PDF file
HTML file
Bibliographic databases:
ArXiv:
1912.13277
MSC: 32Q30, 14G50 Received: February 5, 2020; in final form May 29, 2020; Published online June 14, 2020
Language:
Citation:
Julia Bernatska, Yaacov Kopeliovich, “Addition of Divisors on Hyperelliptic Curves via Interpolation Polynomials”, SIGMA, 16 (2020), 053, 21 pp.
Citation in format AMSBIB
\Bibitem{BerKop20}
\by Julia~Bernatska, Yaacov~Kopeliovich
\paper Addition of Divisors on Hyperelliptic Curves via Interpolation Polynomials
\jour SIGMA
\yr 2020
\vol 16
\papernumber 053
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma1590}
\crossref{https://doi.org/10.3842/SIGMA.2020.053}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000541047500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090627771}
Linking options:
http://mi.mathnet.ru/eng/sigma1590 http://mi.mathnet.ru/eng/sigma/v16/p53
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 15 | Full text: | 1 |
|