RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2005, Volume 1, 028, 8 pages (Mi sigma28)  

Representations of $U(2\infty)$ and the Value of the Fine Structure Constant

William H. Klink

Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA

Abstract: A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in boson creation and annihilation operators. The fermion-antifermion operators generate a unitary Lie algebra, whose representations are fixed by a first order Casimir operator (corresponding to baryon number or charge). Eigenvectors and eigenvalues of the four-momentum operator are analyzed and exact solutions in the strong coupling limit are sketched. A simple model shows how the fine structure constant might be determined for the QED vertex.

Keywords: point form relativistic quantum mechanics; antisymmetric representations of infinite unitary groups; semidirect sum ofunitary with Heisenberg algebra

DOI: https://doi.org/10.3842/SIGMA.2005.028

Full text: PDF file (189 kB)
Full text: http://emis.mi.ras.ru/.../Paper028
References: PDF file   HTML file

Bibliographic databases:

ArXiv: quant-ph/0512228
MSC: 22D10; 81R10; 81T27
Received: September 28, 2005; in final form December 17, 2005; Published online December 25, 2005
Language:

Citation: William H. Klink, “Representations of $U(2\infty)$ and the Value of the Fine Structure Constant”, SIGMA, 1 (2005), 028, 8 pp.

Citation in format AMSBIB
\Bibitem{Kli05}
\by William H. Klink
\paper Representations of $U(2\infty)$ and the Value of the Fine Structure Constant
\jour SIGMA
\yr 2005
\vol 1
\papernumber 028
\totalpages 8
\mathnet{http://mi.mathnet.ru/sigma28}
\crossref{https://doi.org/10.3842/SIGMA.2005.028}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2193367}
\zmath{https://zbmath.org/?q=an:1092.81067}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000207064600028}


Linking options:
  • http://mi.mathnet.ru/eng/sigma28
  • http://mi.mathnet.ru/eng/sigma/v1/p28

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:94
    Full text:27
    References:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019