|
SIGMA, 2008, Volume 4, 070, 21 pp.
(Mi sigma323)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
The PBW Filtration, Demazure Modules and Toroidal Current Algebras
Evgeny Feiginab a I. E. Tamm Department of Theoretical Physics, Lebedev Physics Institute, Leninski Prospect 53, Moscow, 119991, Russia
b Mathematical Institute, University of Cologne, Weyertal 86-90, D-50931, Cologne, Germany
Abstract:
Let $L$ be the basic (level one vacuum) representation of the affine Kac–Moody Lie algebra
$\widehat{\mathfrak g}$. The $m$-th space $F_m$ of the PBW filtration on $L$ is a linear span of vectors of the form $x_1\cdots x_lv_0$, where $l\le m$, $x_i\in\widehat{\mathfrak g}$ and $v_0$ is a highest weight vector of $L$. In this paper we give two descriptions of the associated graded space $L^{\mathrm{gr}}$ with respect to the PBW filtration. The “top-down” description deals with a structure of $L^{\mathrm{gr}}$ as
a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field $e_\theta(z)^2$, which corresponds to the longest root $\theta$. The “bottom-up” description deals with the structure of $L^{\mathrm{gr}}$ as a representation of the current algebra $\mathfrak g\otimes\mathbb C[t]$. We prove that each quotient $F_m/F_{m-1}$ can be filtered by graded deformations of the tensor products of $m$ copies of $\mathfrak g$.
Keywords:
affine Kac–Moody algebras; integrable representations; Demazure modules
DOI:
https://doi.org/10.3842/SIGMA.2008.070
Full text:
PDF file (332 kB)
Full text:
http://emis.mi.ras.ru/.../070
References:
PDF file
HTML file
Bibliographic databases:
ArXiv:
0806.4851
MSC: 17B67 Received: July 4, 2008; in final form October 6, 2008; Published online October 14, 2008
Language:
Citation:
Evgeny Feigin, “The PBW Filtration, Demazure Modules and Toroidal Current Algebras”, SIGMA, 4 (2008), 070, 21 pp.
Citation in format AMSBIB
\Bibitem{Fei08}
\by Evgeny Feigin
\paper The PBW Filtration, Demazure Modules and Toroidal Current Algebras
\jour SIGMA
\yr 2008
\vol 4
\papernumber 070
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma323}
\crossref{https://doi.org/10.3842/SIGMA.2008.070}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2470526}
\zmath{https://zbmath.org/?q=an:05555842}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000267267800070}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896060542}
Linking options:
http://mi.mathnet.ru/eng/sigma323 http://mi.mathnet.ru/eng/sigma/v4/p70
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Feigin E., Fourier G., Littelmann P., “PBW filtration and bases for irreducible modules in type A(n)”, Transform Groups, 16:1 (2011), 71–89
-
Feigin E., Fourier G., Littelmann P., “PBW Filtration and Bases for Symplectic Lie Algebras”, Int Math Res Not, 2011, no. 24, 5760–5784
-
Feigin E., “Degenerate Flag Varieties and the Median Genocchi Numbers”, Math. Res. Lett., 18:6 (2011), 1163–1178
-
Feigin E., “G(a)(M) Degeneration of Flag Varieties”, Sel. Math.-New Ser., 18:3 (2012), 513–537
-
Bhimarthi Ravinder, “Demazure Modules, Chari–Venkatesh Modules and Fusion Products”, SIGMA, 10 (2014), 110, 10 pp.
-
Kus D., Littelmann P., “Fusion Products and Toroidal Algebras”, Pac. J. Math., 278:2 (2015), 427–445
-
Feigin E., Makedonskyi I., “Nonsymmetric Macdonald Polynomials and Pbw Filtration: Towards the Proof of the Cherednik-Orr Conjecture”, J. Comb. Theory Ser. A, 135 (2015), 60–84
|
Number of views: |
This page: | 226 | Full text: | 52 | References: | 19 |
|