General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

SIGMA, 2009, Volume 5, 053, 22 pages (Mi sigma399)  

This article is cited in 9 scientific papers (total in 9 papers)

An Alternative Canonical Approach to the Ghost Problem in a Complexified Extension of the Pais–Uhlenbeck Oscillator

A. Déctora, H. A. Morales-Técotlab, L. F. Urrutiaa, J. D. Vergaraa

a Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. Postal 70-543, México D. F., México
b Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, CP 09340, México D. F., México

Abstract: Our purpose in this paper is to analyze the Pais–Uhlenbeck (PU) oscillator using complex canonical transformations. We show that starting from a Lagrangian approach we obtain a transformation that makes the extended PU oscillator, with unequal frequencies, to be equivalent to two standard second order oscillators which have the original number of degrees of freedom. Such extension is provided by adding a total time derivative to the PU Lagrangian together with a complexification of the original variables further subjected to reality conditions in order to maintain the required number of degrees of freedom. The analysis is accomplished at both the classical and quantum levels. Remarkably, at the quantum level the negative norm states are eliminated, as well as the problems of unbounded below energy and non-unitary time evolution. We illustrate the idea of our approach by eliminating the negative norm states in a complex oscillator. Next, we extend the procedure to the Pais–Uhlenbeck oscillator. The corresponding quantum propagators are calculated using Schwinger's quantum action principle. We also discuss the equal frequency case at the classical level.

Keywords: quantum canonical transformations; higher order derivative models


Full text: PDF file (309 kB)
Full text:
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 0905.0589
MSC: 70H15; 70H50; 81S10
Received: November 14, 2008; in final form April 22, 2009; Published online May 5, 2009

Citation: A. Déctor, H. A. Morales-Técotl, L. F. Urrutia, J. D. Vergara, “An Alternative Canonical Approach to the Ghost Problem in a Complexified Extension of the Pais–Uhlenbeck Oscillator”, SIGMA, 5 (2009), 053, 22 pp.

Citation in format AMSBIB
\by A.~D\'ector, H.~A.~Morales-T\'ecotl, L.~F.~Urrutia, J.~D.~Vergara
\paper An Alternative Canonical Approach to the Ghost Problem in a~Complexified Extension of the Pais--Uhlenbeck Oscillator
\jour SIGMA
\yr 2009
\vol 5
\papernumber 053
\totalpages 22

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Martinez S.A., Montemayor R., Urrutia L.F., “Perturbative Hamiltonian Constraints for Higher-Order Theories”, Internat J Modern Phys A, 26:26 (2011), 4661–4686  crossref  mathscinet  zmath  adsnasa  isi  scopus
    2. Laemmerzahl C., Rademaker P., “Higher Order Equations of Motion and Gravity”, Phys. Rev. D, 86:12 (2012), 124017  crossref  adsnasa  isi  scopus
    3. Gallardo A., “Time Boundary Terms and Dirac Constraints”, Int. J. Mod. Phys. A, 27:11 (2012), 1250058  crossref  mathscinet  zmath  adsnasa  isi  scopus
    4. Margalli C.A., David Vergara J., “Complex Higher Order Derivative Theories”, Ix Workshop of the Gravitation and Mathematical Physics Division of the Mexican Physical Society, AIP Conference Proceedings, 1473, eds. UrenaLopez L., BecerrilBarcenas R., LinaresRomero R., Amer Inst Physics, 2012, 255–259  crossref  isi  scopus
    5. Lopez-Sarrion J., Reyes C.M., “Myers-Pospelov Model as an Ensemble of Pais-Uhlenbeck Oscillators: Unitarity and Lorentz Invariance Violation”, Eur. Phys. J. C, 73:4 (2013), 2391  crossref  adsnasa  isi  scopus
    6. Rami, E.-N.A., Soulati, T., Rezazadeh, H., “Non-standard complex Lagrangian dynamics”, Journal of Advanced Research in Dynamical and Control Systems, 5:1 (2013), 50–62  mathscinet  scopus
    7. Masterov I., “An Alternative Hamiltonian Formulation For the Pais-Uhlenbeck Oscillator”, Nucl. Phys. B, 902 (2016), 95–114  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    8. Masterov I., “The odd-order Pais–Uhlenbeck oscillator”, Nucl. Phys. B, 907 (2016), 495–508  crossref  mathscinet  zmath  isi  elib  scopus
    9. Cumsille P. Reyes C.M. Ossandon S. Reyes C., “Polymer quantization, stability and higher-order time derivative terms”, Int. J. Mod. Phys. A, 31:9 (2016), 1650040  crossref  mathscinet  zmath  isi  elib  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:131
    Full text:30

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019