RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


SIGMA, 2009, Volume 5, 070, 34 pages (Mi sigma415)  

This article is cited in 6 scientific papers (total in 6 papers)

On Brane Solutions Related to Non-Singular Kac–Moody Algebras

Vladimir D. Ivashchukab, Vitaly N. Melnikovab

a Institute of Gravitation and Cosmology, Peoplesí Friendship University of Russia, 6 Miklukho-Maklaya Str., Moscow 117198, Russia
b Center for Gravitation and Fundamental Metrology, VNIIMS, 46 Ozyornaya Str., Moscow 119361, Russia

Abstract: A multidimensional gravitational model containing scalar fields and antisymmetric forms is considered. The manifold is chosen in the form $M=M_0\times M_1\times\cdots\times M_n$, where $M_i$ are Einstein spaces ($i\geq1$). The sigma-model approach and exact solutions with intersecting composite branes (e.g. solutions with harmonic functions, $S$-brane and black brane ones) with intersection rules related to non-singular Kac–Moody (KM) algebras (e.g. hyperbolic ones) are reviewed. Some examples of solutions, e.g. corresponding to hyperbolic KM algebras: $H_2(q,q)$, $AE_3$, $HA_2^{(1)}$, $E_{10}$ and Lorentzian KM algebra $P_{10}$ are presented.

Keywords: Kac–Moody algebras; $S$-branes; black branes; sigma-model; Toda chains

DOI: https://doi.org/10.3842/SIGMA.2009.070

Full text: PDF file (507 kB)
Full text: http://emis.mi.ras.ru/journals/SIGMA/2009/070/
References: PDF file   HTML file

Bibliographic databases:

ArXiv: 0810.0196
MSC: 17B67; 17B81; 83E15; 83E50; 83F05; 81T30
Received: October 1, 2008; in final form June 15, 2009; Published online July 7, 2009
Language:

Citation: Vladimir D. Ivashchuk, Vitaly N. Melnikov, “On Brane Solutions Related to Non-Singular Kac–Moody Algebras”, SIGMA, 5 (2009), 070, 34 pp.

Citation in format AMSBIB
\Bibitem{IvaMel09}
\by Vladimir D.~Ivashchuk, Vitaly N.~Melnikov
\paper On Brane Solutions Related to Non-Singular Kac--Moody Algebras
\jour SIGMA
\yr 2009
\vol 5
\papernumber 070
\totalpages 34
\mathnet{http://mi.mathnet.ru/sigma415}
\crossref{https://doi.org/10.3842/SIGMA.2009.070}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2529177}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000271092200006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896061105}


Linking options:
  • http://mi.mathnet.ru/eng/sigma415
  • http://mi.mathnet.ru/eng/sigma/v5/p70

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ivashchuk V.D., Melnikov V.N., “Black Brane Solutions Related to Non-Singular Kac-Moody Algebras”, Gravitation & Cosmology, 17:1 (2011), 7–17  crossref  mathscinet  zmath  adsnasa  isi  scopus
    2. Ivashchuk V.D., “More M-Branes on Product of Ricci-Flat Manifolds”, Int. J. Geom. Methods Mod. Phys., 9:8 (2012), 1250067  crossref  mathscinet  zmath  isi  elib  scopus
    3. Vitaly Melnikov, “Multidimensional Cosmology and Fundamental Metrology”, Proceedings of GRACOS-2014, 2014, 6–24
    4. Melnikov V.N., “Centenary of Einstein?s general relativity. Its present extensions”, Gravit. Cosmol., 22:2 (2016), 80–96  crossref  mathscinet  zmath  isi  scopus
    5. Ivashchuk V.D., “On Brane Solutions With Intersection Rules Related to Lie Algebras”, Symmetry-Basel, 9:8 (2017), 155  crossref  mathscinet  isi  scopus
    6. Ivashchuk V.D., “On Flux Integrals For Generalized Melvin Solution Related to Simple Finite-Dimensional Lie Algebra”, Eur. Phys. J. C, 77:10 (2017), 653  crossref  isi  scopus
  • Symmetry, Integrability and Geometry: Methods and Applications
    Number of views:
    This page:183
    Full text:29
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019